Estimates from below for the first eigenvalue of the p-Laplacian

被引:2
作者
Kutev, Nikolai [1 ]
Rangelov, Tsviatko [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, BU-1113 Sofia, Bulgaria
来源
SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019) | 2019年 / 2159卷
关键词
p-Laplacian; First eigenvalue; Hardy inequality; PRINCIPAL EIGENVALUE; EIGENPAIR; PROOF;
D O I
10.1063/1.5127483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first eigenvalue lambda of the p-Laplacian operator with zero Dirichlet boundary condition in bounded domain Omega subset of R-n, n >= 2, p > 1 is considered. A lower bound for lambda is obtained by means of Hardy inequality with double singular kernel. Comparison with analytical and numerical estimates from below in the ball for the first eigenvalue is shown.
引用
收藏
页数:15
相关论文
共 17 条
  • [1] [Anonymous], 1971, EQUATIONS MATH PHYS
  • [2] [Anonymous], 1984, Proc. Fac. Sci. Tokai Univ.
  • [3] A direct uniqueness proof for equations involving the p-Laplace operator
    Belloni, M
    Kawohl, B
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 109 (02) : 229 - 231
  • [4] Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1
    Benedikt, Jiri
    Drabek, Pavel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 23 - 29
  • [5] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [6] A Proof of the Faber-Krahn Inequality for the First Eigenvalue of the p-Laplacian
    Bhattacharya, Tilak
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1999, 177 (01) : 225 - 240
  • [7] Computing the First Eigenpair of the -Laplacian via Inverse Iteration of Sublinear Supersolutions
    Biezuner, Rodney Josue
    Brown, Jed
    Ercole, Grey
    Martins, Eder Marinho
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (01) : 180 - 201
  • [8] Cheeger J., 2015, Problems in analysis, P195, DOI DOI 10.1515/9781400869312-013
  • [9] Davies E, 1998, OPER THEORY ADV APPL, V110, P57
  • [10] FABRICANT A., 2015, SERDICA MATH J, V41, P493