Relationship between 4H-SiC/SiO2 transition layer thickness and mobility

被引:78
作者
Biggerstaff, T. L. [1 ]
Reynolds, C. L., Jr. [1 ]
Zheleva, T. [2 ]
Lelis, A. [2 ]
Habersat, D. [2 ]
Haney, S. [3 ]
Ryu, S. -H. [3 ]
Agarwal, A. [3 ]
Duscher, G. [1 ]
机构
[1] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[2] USA, Res Lab, Adelphi, MD 20783 USA
[3] Cree Inc, Durham, NC 27703 USA
关键词
aluminium; annealing; crystal microstructure; electron energy loss spectra; interface states; MOSFET; semiconductor thin films; silicon compounds; surface chemistry; wide band gap semiconductors; TRANSMISSION ELECTRON-MICROSCOPE; SILICON-CARBIDE; NITRIC-OXIDE; INTERFACE; SPECTROSCOPY; POLYTYPE;
D O I
10.1063/1.3144272
中图分类号
O59 [应用物理学];
学科分类号
摘要
The interfacial region between silicon carbide (SiC) and its native oxide contains a high density of interfacial traps, which is considered a major problem leading to a lower mobility that has hindered SiC metal oxide semiconductor field effect transistors from reaching their theoretical expectations. We investigate the microstructure and chemistry of the 4H-SiC/SiO2 interface due to variations in nitric oxide annealing and aluminum implantation using Z-contrast imaging and electron energy loss spectroscopy. A transition layer with a carbon to silicon ratio greater than 1 is consistently observed on the SiC side of the interface in each of these samples, and the width of this transition layer is found to be inversely related to the effective channel mobility measured on fabricated devices.
引用
收藏
页数:3
相关论文
共 22 条
[1]   Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation [J].
Afanas'ev, VV ;
Stesmans, A ;
Ciobanu, F ;
Pensl, G ;
Cheong, KY ;
Dimitrijev, S .
APPLIED PHYSICS LETTERS, 2003, 82 (04) :568-570
[2]  
BIGGERSTAFF TL, 2008, THESIS N CAROLINA ST
[3]  
BIGGERSTAFF TL, UNPUB
[4]   Silicon carbide MOSFET technology [J].
Brown, DM ;
Downey, E ;
Ghezzo, M ;
Kretchmer, J ;
Krishnamurthy, V ;
Hennessy, W ;
Michon, G .
SOLID-STATE ELECTRONICS, 1996, 39 (11) :1531-1542
[5]   High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy [J].
Chang, KC ;
Nuhfer, NT ;
Porter, LM ;
Wahab, Q .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2186-2188
[6]   High-resolution elemental profiles of the silicon dioxide/4H-silicon carbide interface [J].
Chang, KC ;
Cao, Y ;
Porter, LM ;
Bentley, J ;
Dhar, S ;
Feldman, LC ;
Williams, JR .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[7]   Electrical, structural, and chemical analysis of silicon carbide-based metal-oxide-semiconductor field-effect-transistors [J].
Chang, KC ;
Porter, LM ;
Bentley, J ;
Lu, CY ;
Cooper, J .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) :8252-8257
[8]   Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide [J].
Chung, GY ;
Tin, CC ;
Williams, JR ;
McDonald, K ;
Di Ventra, M ;
Pantelides, ST ;
Feldman, LC ;
Weller, RA .
APPLIED PHYSICS LETTERS, 2000, 76 (13) :1713-1715
[9]   Deep level defects which limit current gain in 4H SiC bipolar junction transistors [J].
Cochrane, C. J. ;
Lenahan, P. M. ;
Lelis, A. J. .
APPLIED PHYSICS LETTERS, 2007, 90 (12)
[10]   Recent advances in SiC power devices [J].
Cooper, JA ;
Melloch, MR ;
Woodall, JM ;
Spitz, J ;
Schoen, KJ ;
Henning, JP .
SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 :895-900