A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics

被引:18
作者
Alvarez, O.
Carlini, E.
Monneau, R.
Rouy, E.
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Cent Lyon, Dept Math, F-69134 Ecully, France
[4] Univ Rouen, UMR 6085, F-76821 Mont St Aignan, France
关键词
D O I
10.1007/s00211-006-0030-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study dislocation dynamics with a level set point of view. The model we present here looks at the zero level set of the solution of a non local Hamilton Jacobi equation, as a dislocation in a plane of a crystal. The front has a normal speed, depending on the solution itself. We prove existence and uniqueness for short time in the set of continuous viscosity solutions. We also present a first order finite difference scheme for the corresponding level set formulation of the model. The scheme is based on monotone numerical Hamiltonian, proposed by Osher and Sethian. The non local character of the problem makes it not monotone. We obtain an explicit convergence rate of the approximate solution to the viscosity solution. We finally provide numerical simulations.
引用
收藏
页码:413 / 444
页数:32
相关论文
共 13 条
[1]   Convergence of a first order scheme for a non-local eikonal equation [J].
Alvarez, O. ;
Carlini, E. ;
Monneau, R. ;
Rouy, E. .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (09) :1136-1146
[2]  
Alvarez O, 2005, INTERFACE FREE BOUND, V7, P415
[3]   Small-time solvability of a non-local Hamilton-Jacobi equation describing dislocation dynamics [J].
Alvarez, O ;
Hoch, P ;
Le Bouar, Y ;
Monneau, R .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) :679-684
[4]   Dislocation dynamics: Short-time existence and uniqueness of the solution [J].
Alvarez, Olivier ;
Hoch, Philippe ;
Le Bouar, Yann ;
Monneau, Regis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (03) :449-504
[5]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[6]  
CRANDALL G, 1984, MATH COMPUT, V167, P1
[7]   ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) :353-370
[8]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[9]  
HIRSH JP, 1992, THEORY DISLOCATIONS
[10]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49