Applying Deep Neural Networks (DNN) for Measuring Photometric Redshifts from Galaxy Images: Preliminary Study

被引:3
作者
Syarifudin, M. R. I. [1 ]
Hakim, M. I. [1 ]
Arifyanto, M. I. [1 ]
机构
[1] Inst Teknol Bandung, Dept Astron, Bandung, West Java, Indonesia
来源
10TH SOUTHEAST ASIA ASTRONOMY NETWORK | 2019年 / 1231卷
关键词
Photometric-redshifts; Galaxies; Machine Learning; Deep Neural Networks;
D O I
10.1088/1742-6596/1231/1/012013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the cosmological and extragalactic study, distance to a galaxy is an important parameter, by knowing the distance, we can find any other physical parameter such as mass, luminosity, star formation rate, and metallicity. By applying the specific cosmological model, we can measure a distance from the redshift. The exact redshift can only measure by using the spectroscopic technique (Doppler effect), but spectroscopic observation limited to brighter objects and numbers of objects in a single field of view (FoV). While photometric observation can capture fainter objects and more objects in a single FoV. Measurements of photometric redshift could have done by comparing the SED curves of the elliptical galaxy with known spectroscopic redshifts from other elliptical galaxies which we want to find the photometric redshift. Another method is to do linear or non-linear regression, by assuming the redshift is a function of magnitude in each band-pass filter. Therefore, we propose a technique that using full galaxy images in each measured bands and machine learning method for measuring photometric redshift. We pass entire multi-band galaxy images into the machine learning architecture to get an estimated redshift. In this work, we use galaxies images at 0 <= z <= 1 from SDSS DR 10 as the datasets and we use DenseNet, one of the Deep Neural Networks (DNN) architecture.
引用
收藏
页数:6
相关论文
共 17 条
[1]   THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT [J].
Ahn, Christopher P. ;
Alexandroff, Rachael ;
Allende Prieto, Carlos ;
Anders, Friedrich ;
Anderson, Scott F. ;
Anderton, Timothy ;
Andrews, Brett H. ;
Aubourg, Eric ;
Bailey, Stephen ;
Bastien, Fabienne A. ;
Bautista, Julian E. ;
Beers, Timothy C. ;
Beifiori, Alessandra ;
Bender, Chad F. ;
Berlind, Andreas A. ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blake, Cullen H. ;
Blanton, Michael R. ;
Blomqvist, Michael ;
Bochanski, John J. ;
Bolton, Adam S. ;
Borde, Arnaud ;
Bovy, Jo ;
Bradley, Alaina Shelden ;
Brandt, W. N. ;
Brauer, Dorothee ;
Brinkmann, J. ;
Brownstein, Joel R. ;
Busca, Nicolas G. ;
Carithers, William ;
Carlberg, Joleen K. ;
Carnero, Aurelio R. ;
Carr, Michael A. ;
Chiappini, Cristina ;
Chojnowski, S. Drew ;
Chuang, Chia-Hsun ;
Comparat, Johan ;
Crepp, Justin R. ;
Cristiani, Stefano ;
Croft, Rupert A. C. ;
Cuesta, Antonio J. ;
Cunha, Katia ;
da Costa, Luiz N. ;
Dawson, Kyle S. ;
De Lee, Nathan ;
Dean, Janice D. R. ;
Delubac, Timothee .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
[2]  
Baum W. A., 1962, IAU S, V15, P390
[3]  
Bridle J. S., 1990, Neurocomputing, P227
[4]   RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS [J].
Carliles, Samuel ;
Budavari, Tamas ;
Heinis, Sebastien ;
Priebe, Carey ;
Szalay, Alexander S. .
ASTROPHYSICAL JOURNAL, 2010, 712 (01) :511-515
[5]   ANNz:: Estimating photometric redshifts using artificial neural networks [J].
Collister, AA ;
Lahav, O .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) :345-351
[6]   Slicing through multicolor space: Galaxy redshifts from broadband photometry [J].
Connolly, AJ ;
Csabai, I ;
Szalay, AS ;
Koo, DC ;
Kron, RG ;
Munn, JA .
ASTRONOMICAL JOURNAL, 1995, 110 (06) :2655-&
[7]   Multidimensional indexing tools for the virtual observatory [J].
Csabai, I. ;
Dobos, L. ;
Trencseni, M. ;
Herczegh, G. ;
Jozsa, P. ;
Purged, N. ;
Budavari, T. ;
Szalay, A. S. .
ASTRONOMISCHE NACHRICHTEN, 2007, 328 (08) :852-857
[8]   Measuring photometric redshifts using galaxy images and Deep Neural Networks [J].
Hoyle, B. .
ASTRONOMY AND COMPUTING, 2016, 16 :34-40
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   PHOTOMETRIC REDSHIFTS OF GALAXIES [J].
LOH, ED ;
SPILLAR, EJ .
ASTROPHYSICAL JOURNAL, 1986, 303 (01) :154-161