Quantum metrology from an information theory perspective

被引:0
作者
Boixo, Sergio [1 ]
Datta, Animesh [2 ,3 ]
Davis, Matthew J. [4 ]
Flammia, Steven T. [5 ]
Shaji, Anil [6 ]
Tacla, Alexandre B. [6 ]
Caves, Carlton M. [6 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Imperial Coll, Inst Math Sci, London SW7 2PG, England
[3] QOLS, Imperial Coll, Blackett Lab, London SW7 2BW, England
[4] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
来源
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC) | 2009年 / 1110卷
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
quantum metrology; nonlinear interferometry; Bose-Einstein condensate;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Questions about quantum limits on measurement precision were once viewed from the perspective of how to reduce or avoid the effects of quantum noise. With the advent of quantum information science came a paradigm shift to proving rigorous bounds on measurement precision. These bounds have been interpreted as saying, first, that the best achievable sensitivity scales as 1/n, where it is the number of particles one has available for a measurement and, second, that the only way to achieve this Heisenberg-limited sensitivity is to use quantum entanglement. We review these results and show that using quadratic couplings of n particles to a parameter to be estimated, one can achieve sensitivities that scale as 1/n(2) if one uses entanglement, but even in the absence of any entanglement at any time during the measurement protocol, one can achieve a super-Heisenberg scaling of 1/n(3/2).
引用
收藏
页码:427 / +
页数:2
相关论文
共 15 条
[1]  
[Anonymous], 1982, N HOLLAND SERIES STA
[2]  
[Anonymous], 1976, MATH SCI ENG SERIES
[3]   Breaking the Heisenberg limit with inefficient detectors -: art. no. 045801 [J].
Beltrán, J ;
Luis, A .
PHYSICAL REVIEW A, 2005, 72 (04)
[4]  
BOIXO S, 2008, QCMC 2008 P AIP, P44304
[5]   Quantum-limited metrology with product states [J].
Boixo, Sergio ;
Datta, Animesh ;
Flammia, Steven T. ;
Shaji, Anil ;
Bagan, Emilio ;
Caves, Carlton M. .
PHYSICAL REVIEW A, 2008, 77 (01)
[6]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[7]   Quantum metrology: Dynamics versus entanglement [J].
Boixo, Sergio ;
Datta, Animesh ;
Davis, Matthew J. ;
Flammia, Steven T. ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[8]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[9]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[10]   Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit [J].
Choi, S. ;
Sundaram, B. .
PHYSICAL REVIEW A, 2008, 77 (05)