Contact and Frobeniusian forms on Lie groups

被引:23
作者
Goze, Michel [1 ]
Remm, Elisabeth [2 ]
机构
[1] Ramm Algebra Ctr, F-68800 Rammersmatt, France
[2] Univ Haute Alsace, Fac Sci & Tech, Lab Math & Applicat, F-68093 Mulhouse, France
关键词
Lie algebras - contact forms; Frobeniusian Lie algebras; Cartan class; ALGEBRAS;
D O I
10.1016/j.difgeo.2014.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the construction of contact forms and Frobeniusian forms on a Lie group. Since the notions of contact and symplectic forms on a manifold can be given in terms of Cartan class of differential forms, we investigate the general behavior of the Cartan class of left invariant forms on a Lie group G, especially when G is nilpotent or semi-simple. Since any left invariant form on a Lie group is given by a linear form on the Lie algebra g of G, we study Lie algebras provided with a linear contact form or a Frobeniusian form. We construct the class of contact Lie algebras, for a given dimension, in terms of linear or quadratic deformations of the Heisenberg algebra. We also classify up to contraction the class of Frobenius Lie algebras and characterize in this case the principal element. Since semi-simple Lie algebras of rank greater than 2 are never contact Lie algebras, we study on a Lie group G the Pfaffian forms invariant by a proper subgroup J. We classify, for example, all the J-invariant Pfaffian forms on the Heisenberg group. We describe also a contact form on the simple Lie group SL(2p) invariant by the maximal compact subgroup. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 94
页数:21
相关论文
共 19 条
[11]  
Goze M., 1978, C R ACAD SCI PARIS S, V287, pA337
[12]  
Goze M, 1988, NATO ADV SCI I C, V247, P265
[13]  
Goze M., 1976, C R ACAD SCI PARIS A, V283, pA499
[14]  
Goze M., 1996, MATH ITS APPL, V361
[15]  
Goze Michel, 1975, CLASSE FORMES INVARI
[16]  
Goze Michel, 2013, ARXIV12012674VERSION
[17]   Symplectic or contact structures on Lie groups [J].
Khakimdjanov, Y ;
Goze, M ;
Medina, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (01) :41-54
[18]   STRONGLY HOMOTOPY LIE-ALGEBRAS [J].
LADA, T ;
MARKL, M .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (06) :2147-2161
[19]  
Lutz R., 1979, ANN I FOURIER GRENOB, V29, P283