Shifted poly-Cauchy numbers

被引:12
作者
Komatsu, Takao [1 ]
Szalay, Laszlo [2 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
[2] Univ West Hungary, Inst Math, H-9400 Sopron, Hungary
基金
日本学术振兴会;
关键词
poly-Cauchy numbers; polylogarithm factorial functions; Stirling numbers; BERNOULLI NUMBERS;
D O I
10.1007/s10986-014-9235-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the first author introduced the concept of poly-Cauchy numbers as a generalization of the classical Cauchy numbers and an analogue of poly-Bernoulli numbers. This concept has been generalized in various ways, including poly-Cauchy numbers with a q parameter. In this paper, we give a different kind of generalization called shifted poly-Cauchy numbers and investigate several arithmetical properties. Such numbers can be expressed in terms of original poly-Cauchy numbers. This concept is a kind of analogous ideas to that of Hurwitz zeta-functions compared to Riemann zeta-functions.
引用
收藏
页码:166 / 181
页数:16
相关论文
共 18 条
  • [1] Agoh T, 2010, FIBONACCI QUART, V48, P4
  • [2] [Anonymous], MOSC J COMB NUMBER T
  • [3] [Anonymous], POLYEXPONENTIALS
  • [4] [Anonymous], ACTA SCI MA IN PRESS
  • [5] [Anonymous], 1994, FDN COMPUTER SCI
  • [6] Multiple zeta values, poly-Bernoulli numbers, and related zeta functions
    Arakawa, T
    Kaneko, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 189 - 209
  • [7] Several polynomials associated with the harmonic numbers
    Cheon, Gi-Sang
    Hwang, Suk-Geun
    Lee, Sang-Gu
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2573 - 2584
  • [8] Comtet L., 1974, Advanced combinatorics
  • [9] The Arakawa-Kaneko zeta function
    Coppo, Marc-Antoine
    Candelpergher, Bernard
    [J]. RAMANUJAN JOURNAL, 2010, 22 (02) : 153 - 162
  • [10] Kaneko M., 1997, J THEOR NOMBR BORDX, V9, p221 228