A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers

被引:61
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
Inequality; Ratio; Bernoulli number; Riemann zeta function; Dirichlet eta function; Accuracy; EXPLICIT FORMULAS; IDENTITIES;
D O I
10.1016/j.cam.2018.10.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, by virtue of some properties for the Riemann zeta function, the author finds a double inequality for the ratio of two non-zero neighbouring Bernoulli numbers and analyses the approximating accuracy of the double inequality. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 21 条
[1]   Sharp bounds for the Bernoulli numbers [J].
Alzer, H .
ARCHIV DER MATHEMATIK, 2000, 74 (03) :207-211
[2]  
[Anonymous], 1972, HDB MATH FUNCTIONS F
[3]  
Daniello C., 1994, RENDICONTI CIRCOLO M, V43, P329
[4]   New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities [J].
Ge, Hua-feng .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[5]   EXPLICIT FORMULAS FOR BERNOULLI NUMBERS [J].
GOULD, HW .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (01) :44-&
[6]  
Graham R. L., 1989, Concrete Mathematics - A foundation for computer science. Advanced Book Program, V2nd ed
[7]  
Guo B. -N., 2015, J. Anal. Number Theory, V3, P27
[8]  
Guo B.-N., 2015, Glob. J. Math. Anal., V3, P33
[9]   Some identities and an explicit formula for Bernoulli and Stirling numbers [J].
Guo, Bai-Ni ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :568-579
[10]  
Guo SL, 1999, Z ANAL ANWEND, V18, P1123