Metavalent Bonding in Solids: Characteristic Representatives, Their Properties, and Design Options

被引:33
作者
Cheng, Yudong [1 ]
Wahl, Sophia [1 ]
Wuttig, Matthias [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys IA, D-52056 Aachen, Germany
[2] Forschungszentrum Julich, PGI 10 Green IT, D-52428 Julich, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2021年 / 15卷 / 03期
关键词
chalcogenides; materials design; metavalent bonding; phase‐ change materials; thermoelectrics; PHASE-CHANGE MATERIALS; TOPOLOGICAL CRYSTALLINE INSULATOR; HIGH THERMOELECTRIC PERFORMANCE; ELECTRICAL-PROPERTIES; PEIERLS DISTORTION; OPTICAL-PROPERTIES; TRANSITION; GETE; PRESSURE; SYSTEM;
D O I
10.1002/pssr.202000482
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heavier chalcogenides display a surprisingly wide range of applications enabled by their unconventional properties. Herein, recent studies of three groups of chalcogenides from a chemical bonding perspective are reviewed to reveal the underlying reason for their wide range of applications. For IV-VI materials (GeTe, SnTe, PbTe, PbSe, and PbS), the unique property portfolio and bond-breaking behavior are related to a novel chemical bonding mechanism termed "metavalent bonding" (MVB). The same phenomena are also found for several V2VI3 solids (Bi2Te3, Bi2Se3, Sb2Te3, and beta-As2Te3) and some ternary chalcogenides including crystalline (GeTe)(1-x)(Sb2Te3)(x) alloys. This provides evidence for the prevalence of MVB in these compounds. Subsequently, a quantum-chemistry-based map is presented. Using the transfer and sharing of electrons between adjacent atoms as its two coordinates, materials using MVB are all found in a well-defined region of the map, characterized by sharing about one electron between adjacent atoms and only small charge transfer. This also implies that the degree of MVB is tailored either via Peierls distortions (electron sharing) or charge transfer (electron transfer), leading to the transition toward covalent bonding and ionic bonding, respectively. The tailoring of MVB provides a new approach for materials design.
引用
收藏
页数:14
相关论文
共 98 条
[1]   SN-119 MOSSBAUER AND ELECTRICAL-CONDUCTIVITY STUDY OF SYSTEM SNXGE1-XSE(0 LESS-THAN-OR-EQUAL-TO X LESS-THAN-OR-EQUAL-TO 1) [J].
ABRAHAM, T ;
JUHASZ, C ;
SILVER, J ;
DONALDSON, JD ;
THOMAS, MJK .
SOLID STATE COMMUNICATIONS, 1978, 27 (11) :1185-1187
[2]   Structural phase transitions on the nanoscale:: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe [J].
Akola, J. ;
Jones, R. O. .
PHYSICAL REVIEW B, 2007, 76 (23)
[3]  
[Anonymous], 2009, THESIS RWTH AACHEN U
[4]   Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe [J].
Banik, Ananya ;
Ghosh, Tanmoy ;
Arora, Raagya ;
Dutta, Moinak ;
Pandey, Juhi ;
Acharya, Somnath ;
Soni, Ajay ;
Waghmare, Umesh V. ;
Biswas, Kanishka .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :589-595
[5]   Functional Monochalcogenides: Raman Evidence Linking Properties, Structure, and Metavalent Bonding [J].
Bellin, Christophe ;
Pawbake, Amit ;
Paulatto, Lorenzo ;
Beneut, Keevin ;
Biscaras, Johan ;
Narayana, Chandrabhas ;
Polian, Alain ;
Late, Dattatray J. ;
Shukla, Abhay .
PHYSICAL REVIEW LETTERS, 2020, 125 (14)
[6]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[7]  
BURDETT JK, 1983, J AM CHEM SOC, V105, P1079, DOI 10.1021/ja00343a001
[8]   Overview of candidate device technologies for storage-class memory [J].
Burr, G. W. ;
Kurdi, B. N. ;
Scott, J. C. ;
Lam, C. H. ;
Gopalakrishnan, K. ;
Shenoy, R. S. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2008, 52 (4-5) :449-464
[9]   Thermoelectric Performance of IV-VI Compounds with Octahedral-Like Coordination: A Chemical-Bonding Perspective [J].
Cagnoni, Matteo ;
Fuehren, Daniel ;
Wuttig, Matthias .
ADVANCED MATERIALS, 2018, 30 (33)
[10]   COMPOUND MATERIALS FOR REVERSIBLE, PHASE-CHANGE OPTICAL-DATA STORAGE [J].
CHEN, M ;
RUBIN, KA ;
BARTON, RW .
APPLIED PHYSICS LETTERS, 1986, 49 (09) :502-504