Magnon band structure and magnon density in one-dimensional magnonic crystals

被引:6
|
作者
Qiu, Rong-ke [1 ]
Huang, Te [1 ]
Zhang, Zhi-dong [2 ]
机构
[1] Shenyang Univ Technol, Shenyang 110870, Peoples R China
[2] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
One-dimensional magnonic crystal; Magnon density; Separate band and overlapping magnon band; FM or AFM interlayer exchange coupling; Temperature; Anisotropy; PERIODIC ELASTIC COMPOSITES; FERROMAGNETIC MULTILAYERS; SPIN-WAVES; SUPERLATTICES; DEPENDENCE; RESONANCE; GAPS;
D O I
10.1016/j.jmmm.2014.05.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using Callen's Green's function method and the Tyablikov and Anderson-Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the super lattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic held On the magnon-energy band and magnon density in the K-x-direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 190
页数:11
相关论文
共 50 条
  • [31] Magnon-mediated NMR quantum gates in a one-dimensional antiferromagnet
    Goto, A
    Shimizu, T
    Hashi, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2125 - 2127
  • [32] Impact of the interfacial Dzyaloshinskii-Moriya interaction on the band structure of one-dimensional artificial magnonic crystals: A micromagnetic study
    Silvani, R.
    Kuepferling, M.
    Tacchi, S.
    Carlotti, G.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 539
  • [33] Metamaterial Properties of One-Dimensional and Two-Dimensional Magnonic Crystals
    Zivieri, Roberto
    SOLID STATE PHYSICS, VOL 63, 2012, 63 : 151 - +
  • [34] Band structures of exchange spin waves in one-dimensional bi-component magnonic crystals
    Ma, F.S., 1600, American Institute of Physics Inc. (111):
  • [35] Band structures of exchange spin waves in one-dimensional bi-component magnonic crystals
    Ma, F. S.
    Lim, H. S.
    Zhang, V. L.
    Wang, Z. K.
    Piramanayagam, S. N.
    Ng, S. C.
    Kuok, M. H.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
  • [36] Controlled Spin-Wave Transport in a Magnon-Crystal Structure with a One-Dimensional Array of Holes
    Martyshkin, A. A.
    Odintsov, S. A.
    Gubanova, Yu. A.
    Beginin, E. N.
    Sheshukova, S. E.
    Nikitov, S. A.
    Sadovnikov, A. V.
    JETP LETTERS, 2019, 110 (08) : 533 - 539
  • [37] Influence of magnon-phonon coupling on the phonon dynamics of one-dimensional antiferromagnets
    Malard, M.
    Pires, A. S. T.
    PHYSICAL REVIEW B, 2007, 76 (10):
  • [38] Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes
    Bessonov, V. D.
    Mruczkiewicz, M.
    Gieniusz, R.
    Guzowska, U.
    Maziewski, A.
    Stognij, A. I.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2015, 91 (10)
  • [39] Controlled Spin-Wave Transport in a Magnon-Crystal Structure with a One-Dimensional Array of Holes
    A. A. Martyshkin
    S. A. Odintsov
    Yu. A. Gubanova
    E. N. Beginin
    S. E. Sheshukova
    S. A. Nikitov
    A. V. Sadovnikov
    JETP Letters, 2019, 110 : 533 - 539
  • [40] Propagation of surface magnetostatic waves in a one-dimensional magnon crystal of a variable thickness
    Ignatov, Yu A.
    Klimov, A. A.
    Nikitov, S. A.
    Shcheglov, V. I.
    PHYSICS OF THE SOLID STATE, 2010, 52 (10) : 2090 - 2098