Ancilla-free implementation of generalized measurements for qubits embedded in a qudit space

被引:28
作者
Fischer, Laurin E. [1 ]
Miller, Daniel [1 ]
Tacchino, Francesco [1 ]
Barkoutsos, Panagiotis Kl [1 ]
Egger, Daniel J. [1 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Res Europe Zurich, IBM Quantum, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
基金
瑞士国家科学基金会;
关键词
Hilbert spaces - Integrated circuits - Quantum optics;
D O I
10.1103/PhysRevResearch.4.033027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Informationally complete (IC) positive operator-valued measures (POVMs) are generalized quantum measurements that offer advantages over the standard computational basis readout of qubits. For instance, IC-POVMs enable efficient extraction of operator expectation values, a crucial step in many quantum algorithms. POVM measurements are typically implemented by coupling one additional ancilla qubit to each logical qubit, thus imposing high demands on the device size and connectivity. Here, we show how to implement a general class of IC-POVMs without ancilla qubits. We exploit the higher-dimensional Hilbert space of a qudit in which qubits are often encoded. POVMs can then be realized by coupling each qubit to two of the available qudit states, followed by a projective measurement. We develop the required control pulse sequences and numerically establish their feasibility for superconducting transmon qubits through pulse-level simulations. Finally, we present an experimental demonstration of a qudit-space POVM measurement on IBM Quantum hardware. This paves the way to making POVM measurements broadly available to quantum computing applications.
引用
收藏
页数:17
相关论文
共 86 条
[1]   Shadow tomography based on informationally complete positive operator-valued measure [J].
Acharya, Atithi ;
Saha, Siddhartha ;
Sengupta, Anirvan M. .
PHYSICAL REVIEW A, 2021, 104 (05)
[2]   Qiskit pulse: programming quantum computers through the cloud with pulses [J].
Alexander, Thomas ;
Kanazawa, Naoki ;
Egger, Daniel J. ;
Capelluto, Lauren ;
Wood, Christopher J. ;
Javadi-Abhari, Ali ;
McKay, David C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
[3]  
[Anonymous], 2012, Matrix Computations
[4]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[5]   Quantum Information Scrambling on a Superconducting Qutrit Processor [J].
Blok, M. S. ;
Ramasesh, V. V. ;
Schuster, T. ;
O'Brien, K. ;
Kreikebaum, J. M. ;
Dahlen, D. ;
Morvan, A. ;
Yoshida, B. ;
Yao, N. Y. ;
Siddiqi, I .
PHYSICAL REVIEW X, 2021, 11 (02)
[6]   Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States [J].
Bonet-Monroig, Xavier ;
Babbush, Ryan ;
O'Brien, Thomas E. .
PHYSICAL REVIEW X, 2020, 10 (03)
[7]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[8]   Ancilla-Assisted Calibration of a Measuring Apparatus [J].
Brida, G. ;
Ciavarella, L. ;
Degiovanni, I. P. ;
Genovese, M. ;
Migdall, A. ;
Mingolla, M. G. ;
Paris, M. G. A. ;
Piacentini, F. ;
Polyakov, S. V. .
PHYSICAL REVIEW LETTERS, 2012, 108 (25)
[9]   Reconstructing quantum states with generative models [J].
Carrasquilla, Juan ;
Torlai, Giacomo ;
Melko, Roger G. ;
Aolita, Leandro .
NATURE MACHINE INTELLIGENCE, 2019, 1 (03) :155-161
[10]   Decoherence of superconducting qubits caused by quasiparticle tunneling [J].
Catelani, G. ;
Nigg, S. E. ;
Girvin, S. M. ;
Schoelkopf, R. J. ;
Glazman, L. I. .
PHYSICAL REVIEW B, 2012, 86 (18)