共 50 条
Deep Learning Approach to Power Demand Forecasting in Polish Power System
被引:8
作者:
Ciechulski, Tomasz
[1
]
Osowski, Stanislaw
[1
,2
]
机构:
[1] Mil Univ Technol, Fac Elect, Ul Gen S Kaliskiego 2, PL-00908 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Elect Engn, Pl Politech 1, PL-00661 Warsaw, Poland
来源:
关键词:
power demand forecasting;
diagnostic features;
neural networks;
deep learning;
D O I:
10.3390/en13226154
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The paper presents a new approach to predicting the 24-h electricity power demand in the Polish Power System (PPS, or Krajowy System Elektroenergetyczny-KSE) using the deep learning approach. The prediction system uses a deep multilayer autoencoder to generate diagnostic features and an ensemble of two neural networks: multilayer perceptron and radial basis function network and support vector machine in regression model, for final 24-h forecast one-week advance. The period of the data that is the subject of the experiments is 2014-2019, which has been divided into two parts: Learning data (2014-2018), and test data (2019). The numerical experiments have shown the advantage of deep learning over classical approaches of neural networks for the problem of power demand prediction.
引用
收藏
页数:13
相关论文