Deep Learning Approach to Power Demand Forecasting in Polish Power System

被引:8
作者
Ciechulski, Tomasz [1 ]
Osowski, Stanislaw [1 ,2 ]
机构
[1] Mil Univ Technol, Fac Elect, Ul Gen S Kaliskiego 2, PL-00908 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Elect Engn, Pl Politech 1, PL-00661 Warsaw, Poland
关键词
power demand forecasting; diagnostic features; neural networks; deep learning;
D O I
10.3390/en13226154
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paper presents a new approach to predicting the 24-h electricity power demand in the Polish Power System (PPS, or Krajowy System Elektroenergetyczny-KSE) using the deep learning approach. The prediction system uses a deep multilayer autoencoder to generate diagnostic features and an ensemble of two neural networks: multilayer perceptron and radial basis function network and support vector machine in regression model, for final 24-h forecast one-week advance. The period of the data that is the subject of the experiments is 2014-2019, which has been divided into two parts: Learning data (2014-2018), and test data (2019). The numerical experiments have shown the advantage of deep learning over classical approaches of neural networks for the problem of power demand prediction.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] DEWP: Deep Expansion Learning for Wind Power Forecasting
    Fan, Wei
    Fu, Yanjie
    Zheng, Shun
    Bian, Jiang
    Zhou, Yuanchun
    Xiong, Hui
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [22] Deep Learning Models for PV Power Forecasting: Review
    Yu, Junfeng
    Li, Xiaodong
    Yang, Lei
    Li, Linze
    Huang, Zhichao
    Shen, Keyan
    Yang, Xu
    Xu, Zhikang
    Zhang, Dongying
    Du, Shuai
    ENERGIES, 2024, 17 (16)
  • [23] Power Market Price Forecasting via Deep Learning
    Zhu, Yongli
    Dai, Renchang
    Liu, Guangyi
    Wang, Zhiwei
    Lu, Songtao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 4935 - 4939
  • [24] The Application of Deep Learning Techniques for Solar Power Forecasting
    Al-Jaafreh, Tamer Mushal
    Al-Odienat, Abdullah
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 214 - 219
  • [25] A hybrid deep learning model with error correction for photovoltaic power forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Bu, Siqi
    Kuang, Guowen
    He, Wei
    Zhu, Yuxiang
    Aziz, Saddam
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [26] Attention Mechanism in Deep Learning for Wind Power Forecasting
    Bharti, Soumya
    Saini, Vikash Kumar
    Kumar, Rajesh
    Vijayvargiya, Ankit
    2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [27] SolarFlux Predictor: A Novel Deep Learning Approach for Photovoltaic Power Forecasting in South Korea
    Min, Hyunsik
    Hong, Seokjun
    Song, Jeonghoon
    Son, Byeoungmin
    Noh, Byeongjoon
    Moon, Jihoon
    ELECTRONICS, 2024, 13 (11)
  • [28] Forecasting Regional Level Solar Power Generation Using Advanced Deep Learning Approach
    Almaghrabi, Sarah
    Rana, Mashud
    Hamilton, Margaret
    Rahaman, Mohammad Saiedur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [29] Improved grey-based approach for power demand forecasting
    林佳木
    Journal of Chongqing University, 2006, (04) : 229 - 234
  • [30] Deep Learning Based a New Approach for Power Quality Disturbances Classification in Power Transmission System
    Topaloglu, Ismail
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (01) : 77 - 88