Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

被引:9
作者
Bittencourt, Victor A. S. V. [1 ]
Blasone, Massimo [2 ,4 ]
Bernardini, Alex E. [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, POB 676, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Salerno, Dipartimento Fis, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
[3] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[4] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, Naples, Italy
基金
巴西圣保罗研究基金会;
关键词
ELECTRONIC-PROPERTIES; BERRYS PHASE; QUANTUM;
D O I
10.1103/PhysRevB.97.125435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation-which includes pseudovectorlike and tensorlike field interactions-the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Swapping path-spin intraparticle entanglement onto spin-spin interparticle entanglement [J].
Adhikari, S. ;
Majumdar, A. S. ;
Home, Dipankar ;
Pan, A. K. .
EPL, 2010, 89 (01)
[3]  
[Anonymous], 1991, Statistical Physics II: Nonequilibrium Statistical Mechanics
[4]   Exact mapping of the 2+1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal [J].
Bermudez, A. ;
Martin-Delgado, M. A. ;
Solano, E. .
PHYSICAL REVIEW A, 2007, 76 (04)
[5]   Relativistic dynamics compels a thermalized fermi gas to a unique intrinsic parity eigenstate [J].
Bernardini, A. E. ;
Mizrahi, S. S. .
PHYSICA SCRIPTA, 2014, 89 (07)
[6]  
Bhagarvi K. S., 2014, PHYSICA E, V56, P123
[7]   Dirac bi-spinor entanglement under local noise and its simulation by Jaynes-Cummings interactions [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. .
8TH INTERNATIONAL WORKSHOP DICE2016: SPACETIME - MATTER - QUANTUM MECHANICS, 2017, 880
[8]   Lattice-layer entanglement in Bernal-stacked bilayer graphene [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. .
PHYSICAL REVIEW B, 2017, 95 (19)
[9]   Schrodinger cat and Werner state disentanglement simulated by trapped ion systems [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (07)
[10]   Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. ;
Blasone, Massimo .
PHYSICAL REVIEW A, 2016, 93 (05)