Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics

被引:37
作者
Chamberland, Christopher [1 ,2 ]
Iyer, Pavithran [3 ,4 ]
Poulin, David [3 ,4 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[4] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
关键词
THRESHOLD;
D O I
10.22331/q-2018-01-04-43
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of fault-tolerant quantum computation in the presence of slow error diagnostics, either caused by measurement latencies or slow decoding algorithms. our scheme offers a few improvements over previously existing solutions, for instance it does not require active error correction and results in a reduced error-correction overhead when error diagnostics is much slower than the gate time. In addition, we adapt our protocol to cases where the underlying error correction strategy chooses the optimal correction amongst all Clifford gates instead of the usual Pauli gates. The resulting Clifford frame protocol is of independent interest as it can increase error thresholds and could find applications in other areas of quantum computation.
引用
收藏
页数:11
相关论文
共 33 条
[1]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[2]   Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes [J].
Anderson, Jonas T. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[3]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[4]  
[Anonymous], INT C GROUP THEOR ME
[5]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Dimensional jump in quantum error correction [J].
Bombin, Hector .
NEW JOURNAL OF PHYSICS, 2016, 18
[8]  
Boykin P. O., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P486, DOI 10.1109/SFFCS.1999.814621
[9]   Hard decoding algorithm for optimizing thresholds under general Markovian noise [J].
Chamberland, Christopher ;
Wallman, Joel ;
Beale, Stefanie ;
Laflamme, Raymond .
PHYSICAL REVIEW A, 2017, 95 (04)
[10]   CLASSICAL PROCESSING REQUIREMENTS FOR A TOPOLOGICAL QUANTUM COMPUTING SYSTEM [J].
Devitt, Simon J. ;
Fowler, Austin G. ;
Tilma, Todd ;
Munro, W. J. ;
Nemoto, Kae .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (1-2) :121-147