Tumbler-shaped hybrid triboelectric nanogenerators for amphibious self-powered environmental monitoring

被引:57
|
作者
Zhao, Zening [1 ,2 ]
Zhang, Zheng [1 ,2 ]
Xu, Liangxu [1 ,2 ]
Gao, Fangfang [1 ,2 ]
Zhao, Bin [1 ,2 ]
Kang, Zhuo [1 ,2 ]
Liao, Qingliang [1 ,2 ]
Zhang, Yue [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Key Lab Adv Energy Mat & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Hybrid energy harvesting; Self-powered environmental monitoring; Amphibious; WIND ENERGY; WIRELESS;
D O I
10.1016/j.nanoen.2020.104960
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-powered sensor networks are an emerging technology with great potential applications in Internet of Things (IoTs). However, simultaneously harvesting various coexist energy from environment has always been a challenge to develop self-powered sensor networks. In this work, a tumbler-shaped hybrid triboelectric nano generator (TH-TENG) is elaborately designed to simultaneously harvest wind and water wave energy on land or ocean. The TH-TENG is composed of an external single-electrode liquid TENG and an internal rolling-ball TENG. The balance-reverting tumbler structure contributes to harvest energy from arbitrary directions and extra swings. Amphibious self-powered environmental monitoring including the wind speed, wave height and wave frequency can be detected by the TH-TENG directly. Meanwhile, the TH-TENGs can also be integrated in parallel to power a commercial environmental monitor. The detection of small vibration is achieved by connecting the TH-TENG with a single chip microcomputer. The TH-TENG demonstrates an effective and novel strategy to harvest coexist energy simultaneously in the amphibious environment and develop wireless sensor networks in the IoTs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, 17 (10) : 8926 - 8941
  • [2] Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation
    Elsanadidy, Esraa
    Mosa, Islam M.
    Luo, Dan
    Xiao, Xiao
    Chen, Jun
    Wang, Zhong Lin
    Rusling, James F.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [3] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Sun, Fengxin
    Zhu, Yongsheng
    Jia, Changjun
    Zhao, Tianming
    Chu, Liang
    Mao, Yupeng
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 477 - 488
  • [4] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98
  • [5] Progress in triboelectric nanogenerators as self-powered smart sensors
    Zhang, Nannan
    Tao, Changyuan
    Fan, Xing
    Chen, Jun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (09) : 1628 - 1646
  • [6] Advances in Self-Powered Sensing with Triboelectric Nanogenerators: A Review
    S. Sreejith
    J. Ajayan
    N. V. Uma Reddy
    Jimsha K. Mathew
    M. Manikandan
    Sensing and Imaging, 26 (1):
  • [7] Review and Prospect of Triboelectric Nanogenerators in Self-powered Microsystems
    Zhang C.
    Fu X.
    Wang Z.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 89 - 101
  • [8] Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors
    Song, Yiding
    Wang, Nan
    Hu, Chaosheng
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2021, 84
  • [9] Self-Powered Hall Vehicle Sensors Based on Triboelectric Nanogenerators
    Guo, Tong
    Zhao, Junqing
    Liu, Wenbo
    Liu, Guoxu
    Pang, Yaokun
    Bu, Tianzhao
    Xi, Fengben
    Zhang, Chi
    Li, Xinjian
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (08):
  • [10] Self-powered siphon rain gauge based on triboelectric nanogenerators
    Hu, Yili
    Hu, Ying
    Li, Jianping
    Wang, Zekang
    Ma, Jijie
    Cheng, Tinghai
    Wen, Jianming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 201