A class of trees and its Wiener index

被引:57
作者
Wagner, Stephan G. [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
trees; partitions; Wiener index;
D O I
10.1007/s10440-006-9026-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will consider the Wiener index for a class of trees that is connected to partitions of integers. Our main theorem is the fact that every integer >= 470 is the Wiener index of a member of this class. As a consequence, this proves a conjecture of Lepovic and Gutman. The paper also contains extremal and average results on the Wiener index of the studied class.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 8 条
[1]  
Diestel R., 2000, GRAD TEXT M, V173
[2]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[3]  
GUTMAN I, 2000, WIENER INDEX STARLIK, P145
[4]   EXPECTED NUMBER OF PARTS IN A PARTITION OF N [J].
KESSLER, I ;
LIVINGSTON, M .
MONATSHEFTE FUR MATHEMATIK, 1976, 81 (03) :203-212
[5]  
KNOPFMACHER A, 2004, UNPUB DISCRETE APPL
[6]   A collective property of trees and chemical trees [J].
Lepovic, M ;
Gutman, I .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (05) :823-826
[7]  
Newman D.J., 1962, MICHIGAN MATH J, V9, P283, DOI DOI 10.1307/MMJ/1028998729
[8]   On the expansion of the partition function in a series [J].
Rademacher, H .
ANNALS OF MATHEMATICS, 1943, 44 :416-422