The Network Architecture of the Saccharomyces cerevisiae Genome

被引:9
|
作者
Hoang, Stephen A. [1 ]
Bekiranov, Stefan [1 ]
机构
[1] Univ Virginia, Sch Med, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
来源
PLOS ONE | 2013年 / 8卷 / 12期
关键词
DNA-REPLICATION; FUNCTIONAL-ORGANIZATION; CHROMATIN INTERACTIONS; YEAST; PRINCIPLES; SITES; GENE; ASSOCIATION; LANDSCAPE; PROTEINS;
D O I
10.1371/journal.pone.0081972
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a network-based approach for surmising the spatial organization of genomes from high-throughput interaction data. Our strategy is based on methods for inferring architectural features of networks. Specifically, we employ a community detection algorithm to partition networks of genomic interactions. These community partitions represent an intuitive interpretation of genomic organization from interaction data. Furthermore, they are able to recapitulate known aspects of the spatial organization of the Saccharomyces cerevisiae genome, such as the rosette conformation of the genome, the clustering of centromeres, as well as tRNAs, and telomeres. We also demonstrate that simple architectural features of genomic interaction networks, such as cliques, can give meaningful insight into the functional role of the spatial organization of the genome. We show that there is a correlation between inter-chromosomal clique size and replication timing, as well as cohesin enrichment. Together, our network-based approach represents an effective and intuitive framework for interpreting high-throughput genomic interaction data. Importantly, there is a great potential for this strategy, given the rich literature and extensive set of existing tools in the field of network analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators
    Chin, Shwe L.
    Marcus, Ian M.
    Klevecz, Robert R.
    Li, Caroline M.
    FEBS JOURNAL, 2012, 279 (06) : 1119 - 1130
  • [42] A Saccharomyces cerevisiae RNase H2 Interaction Network Functions To Suppress Genome Instability
    Allen-Soltero, Stephanie
    Martinez, Sandra L.
    Putnam, Christopher D.
    Kolodner, Richard D.
    MOLECULAR AND CELLULAR BIOLOGY, 2014, 34 (08) : 1521 - 1534
  • [43] Comparative genome analysis of a Saccharomyces cerevisiae wine strain
    Borneman, Anthony R.
    Forgan, Angus H.
    Pretorius, Isak S.
    Chambers, Paul J.
    FEMS YEAST RESEARCH, 2008, 8 (07) : 1185 - 1195
  • [44] Genome instability in DNA helicase mutants of Saccharomyces cerevisiae
    Schmidt, KH
    Kolodner, RD
    FASEB JOURNAL, 2005, 19 (04): : A858 - A858
  • [45] The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome
    Eva M. Strawbridge
    Gary Benson
    Yevgeniy Gelfand
    Craig J. Benham
    Current Genetics, 2010, 56 : 321 - 340
  • [46] Genome-wide expression monitoring in Saccharomyces cerevisiae
    Lisa Wodicka
    Helin Dong
    Michael Mittmann
    Ming-Hsiu Ho
    David J. Lockhart
    Nature Biotechnology, 1997, 15 : 1359 - 1367
  • [47] Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure
    Bereketoglu, Ceyhun
    Arga, Kazim Yalcin
    Eraslan, Serpil
    Mertoglu, Bulent
    PHYSIOLOGICAL GENOMICS, 2017, 49 (10) : 549 - 566
  • [48] Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
    Han, Yan
    Luo, Jie
    Ranish, Jeffrey
    Hahn, Steven
    EMBO JOURNAL, 2014, 33 (21): : 2534 - 2546
  • [49] Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae
    Dunham, MJ
    Badrane, H
    Ferea, T
    Adams, J
    Brown, PO
    Rosenzweig, F
    Botstein, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) : 16144 - 16149
  • [50] Genome sequence data of Saccharomyces cerevisiae CBS 493.94
    Nikodinoska, Ivana
    Moran, Colm A.
    DATA IN BRIEF, 2024, 55