Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage

被引:40
作者
Imran, Muhammad A. [1 ]
Li, Tiantian [1 ]
Wu, Xuemei [1 ]
Yan, Xiaoming [1 ]
Khan, Abdul-Sammed [2 ]
He, Gaohong [1 ]
机构
[1] Dalian Univ Technol, Res & Dev Ctr Membrane Sci & Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfonated polybenzimidazole; Titanium dioxide; High temperature fuel cells; Proton exchange membrane; Leaching; Agglomeration; Polymerization; ETHER KETONE MEMBRANE; NANOCOMPOSITE MEMBRANES; GRAPHENE OXIDE; AROMATIC POLYMERS; HYBRID MEMBRANES; WATER-RETENTION; CONDUCTIVITY; PEM; PERFORMANCE; NANOPARTICLES;
D O I
10.1016/j.cjche.2020.05.016
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The novel sulfonated polybenzimidazole (sPBI)/amine functionalized titanium dioxide (AFT) composite membrane is devised and studied for its capability of the application of high temperature proton exchange membrane fuel cells (HT-PEMFCs), unlike the prior low temperature AFT endeavors. The high temperature compatibility was actualized because of the filling of free volumes in the rigid aromatic matrix of the composite with AFT nanoparticles which inhibited segmental motions of the chains and improved its thermal stability. Besides, amine functionalization of TiO2 enhanced their dispersion character in the sPBI matrix and shortened the interparticle separation gap which finally improved the proton transfer after establishing interconnected pathways and breeding more phosphoric acid (PA) doping. In addition, the appeared assembled clusters of AFT flourished a superior mechanical stability. Thus, the optimized sPBI/AFT (10 wt%) showed 65.3 MPa tensile strength; 0.084 S . cm(-1) proton conductivity (at 160 degrees C; in anhydrous conditions), 28.6% water uptake and PA doping level of 23 mol per sPBI repeat unit. The maximum power density peak for sPBI/AFT-10 met the figure of 0.42 W . cm(-2) at 160 degrees C (in dry conditions) under atmospheric pressure with 1.5 and 2.5 stoichiometric flow rates of H-2/air. These results affirmed the probable fitting of sPBI/AFT composite for HT-PEMFC applications. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:2425 / 2437
页数:13
相关论文
共 111 条
[1]  
Ahmadizadegan H., 2017, NANOCHEM RES, V2, P96
[2]   Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination [J].
Alabi, Adetunji ;
AlHajaj, Ahmed ;
Cseri, Levente ;
Szekely, Gyorgy ;
Budd, Peter ;
Zou, Linda .
NPJ CLEAN WATER, 2018, 1
[3]   Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix [J].
Alberti, G. ;
Narducci, R. ;
Sganappa, M. .
JOURNAL OF POWER SOURCES, 2008, 178 (02) :575-583
[4]   Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells [J].
Amjadi, M. ;
Rowshanzamir, S. ;
Peighambardoust, S. J. ;
Hosseini, M. G. ;
Eikani, M. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9252-9260
[5]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[6]   A comprehensive review of PBI-based high temperature PEM fuel cells [J].
Araya, Samuel Simon ;
Zhou, Fan ;
Liso, Vincenzo ;
Sahlin, Simon Lennart ;
Vang, Jakob Rabjerg ;
Thomas, Sobi ;
Gao, Xin ;
Jeppesen, Christian ;
Kaer, Soren Knudsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21310-21344
[7]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[8]   Nanocomposite polymer electrolyte membranes based on poly(vinylphosphonic acid)/TiO2 nanoparticles [J].
Aslan, Ayse ;
Bozkurt, Ayhan .
JOURNAL OF MATERIALS RESEARCH, 2012, 27 (24) :3090-3095
[9]   Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review [J].
Awang, N. ;
Ismail, A. F. ;
Jaafar, J. ;
Matsuura, T. ;
Junoh, H. ;
Othman, M. H. D. ;
Rahman, M. A. .
REACTIVE & FUNCTIONAL POLYMERS, 2015, 86 :248-258
[10]   Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J].
Bae, JM ;
Honma, I ;
Murata, M ;
Yamamoto, T ;
Rikukawa, M ;
Ogata, N .
SOLID STATE IONICS, 2002, 147 (1-2) :189-194