On the Flexibility of Metal-Organic Frameworks

被引:188
作者
Sarkisov, Lev [1 ]
Martin, Richard L. [2 ]
Haranczyk, Maciej [2 ]
Smit, Berend [3 ,4 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; RAY-POWDER DIFFRACTION; BREATHING TRANSITIONS; RETICULAR CHEMISTRY; DESIGN; MIL-53; ADSORPTION; TAXONOMY; NETS; MOFS;
D O I
10.1021/ja411673b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Occasional, large amplitude flexibility in metal organic frameworks (MOFs) is one of the most intriguing recent discoveries in chemistry and material science. Yet, there is at present no theoretical framework that permits the identification of flexible structures in the rapidly expanding universe of MOFs. Here, we propose a simple method to predict whether a MOF is flexible, based on treating it as a system of rigid elements, connected by hinges. This proposition is correct in application to MOFs based on rigid carboxylate linkers. We validate the method by correctly classifying known experimental MOFs into rigid and flexible groups. Applied to hypothetical MOFs, the method reveals an abundance of flexibility phenomena, and this seems to be at odds with the proportion of flexible structures among experimentally known MOFs. We speculate that the flexibility of a MOF may constitute an intrinsic impediment on its experimental realization. This highlights the importance of systematic prediction of large amplitude flexibility regimes in MOFs.
引用
收藏
页码:2228 / 2231
页数:4
相关论文
共 50 条
[1]   Controlling flexibility of metal-organic frameworks [J].
Zhang, Jie-Peng ;
Zhou, Hao-Long ;
Zhou, Dong-Dong ;
Liao, Pei-Qin ;
Chen, Xiao-Ming .
NATIONAL SCIENCE REVIEW, 2018, 5 (06) :907-919
[2]   Flexibility in Metal-Organic Frameworks: A Basic Understanding [J].
Aljammal, Noor ;
Jabbour, Christia ;
Chaemchuen, Somboon ;
Juzsakova, Tatjana ;
Verpoort, Francis .
CATALYSTS, 2019, 9 (06)
[3]   Controlling the Flexibility of Carbazole-Based Metal-Organic Frameworks by Substituent Effects [J].
Sugamata, Koh ;
Shirai, Akihiro ;
Minoura, Mao .
CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (25)
[4]   Interplay between defects, disorder and flexibility in metal-organic frameworks [J].
Bennett, Thomas D. ;
Cheetham, Anthony K. ;
Fuchs, Alain H. ;
Coudert, Francois-Xavier .
NATURE CHEMISTRY, 2017, 9 (01) :11-16
[5]   Aromatic Substituent Effects on the Flexibility of Metal-Organic Frameworks [J].
Hahm, Hyungwoo ;
Yoo, Kwangho ;
Ha, Hyeonbin ;
Kim, Min .
INORGANIC CHEMISTRY, 2016, 55 (15) :7576-7581
[6]   Unravelling chromism in metal-organic frameworks [J].
Mehlana, Gift ;
Bourne, Susan A. .
CRYSTENGCOMM, 2017, 19 (30) :4238-4259
[7]   Metal-organic frameworks in separations: A review [J].
Firooz, Sepideh Khaki ;
Armstrong, Daniel W. .
ANALYTICA CHIMICA ACTA, 2022, 1234
[8]   Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks [J].
Wei, Rong-Jia ;
Luo, Xiao ;
Ning, Guo-Hong ;
Li, Dan .
ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (05) :746-761
[9]   Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement [J].
Halder, Arijit ;
Ghoshal, Debajyoti .
JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2022, 10 (1-2)
[10]   Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation [J].
Jin, Hua ;
Li, Yanshuo .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2018, 20 :107-113