A 3.5 V Lithium-Iodine Hybrid Redox Battery with Vertically Aligned Carbon Nanotube Current Collector

被引:133
作者
Zhao, Yu [1 ,4 ,5 ]
Hong, Misun [1 ,2 ,3 ]
Mercier, Nadege Bonnet [1 ]
Yu, Guihua [4 ,5 ]
Choi, Hee Cheul [2 ,3 ]
Byon, Hye Ryung [1 ]
机构
[1] RIKEN, Byon Initiat Res Unit IRU, Wako, Saitama 3510198, Japan
[2] Pohang Univ Sci & Technol POSTECH, Dept Chem, Pohang 790784, South Korea
[3] Ctr Artificial Low Dimens Elect Syst, Inst Basic Sci, Pohang 790784, South Korea
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[5] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
基金
新加坡国家研究基金会;
关键词
Carbon nanotube; current collector; iodine; aqueous cathode; redox batteries; FLOW BATTERY; ENERGY-STORAGE; PERFORMANCE; ION; ELECTRODE; CATHODE; LIFE; FELT;
D O I
10.1021/nl404784d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A lithium-iodine (Li-I-2) cell using the triiodide/iodide (I-3(-)/I-) rcdox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (similar to 330 W h kg(-1) and similar to 650 W h L-1, respectively, from saturated I-2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I-3(-)/I- aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I-3(-)/I- redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I-2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.
引用
收藏
页码:1085 / 1092
页数:8
相关论文
共 55 条
  • [31] A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
    Pasta, Mauro
    Wessells, Colin D.
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [32] Vanadium redox battery: Positive half-cell electrolyte studies
    Rahman, Faizur
    Skyllas-Kazacos, Maria
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (02) : 1212 - 1219
  • [33] Rhodes CP, 2011, NANOSCALE, V3, P1731, DOI 10.1039/c0nr00731c
  • [34] Energy analysis of batteries in photovoltaic systems.: Part I:: Performance and energy requirements
    Rydh, CJ
    Sandén, BA
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (11-12) : 1957 - 1979
  • [35] Saito R, 1998, PHYS PROPERTIES CARB, DOI DOI 10.1016/J.PHYSREP.2004.10.006
  • [36] Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
    Song, Zhiping
    Zhou, Haoshen
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2280 - 2301
  • [37] Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems
    Svensson, PH
    Kloo, L
    [J]. CHEMICAL REVIEWS, 2003, 103 (05) : 1649 - 1684
  • [38] High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
    Taberna, L.
    Mitra, S.
    Poizot, P.
    Simon, P.
    Tarascon, J. -M.
    [J]. NATURE MATERIALS, 2006, 5 (07) : 567 - 573
  • [39] Aqueous rechargeable lithium batteries as an energy storage system of superfast charging
    Tang, Wei
    Zhu, Yusong
    Hou, Yuyang
    Liu, Lili
    Wu, Yuping
    Loh, Kian Ping
    Zhang, Hanping
    Zhu, Kai
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) : 2093 - 2104
  • [40] Transparent and catalytic carbon nanotube films
    Trancik, Jessika E.
    Barton, Scott Calabrese
    Hone, James
    [J]. NANO LETTERS, 2008, 8 (04) : 982 - 987