A 3.5 V Lithium-Iodine Hybrid Redox Battery with Vertically Aligned Carbon Nanotube Current Collector

被引:137
作者
Zhao, Yu [1 ,4 ,5 ]
Hong, Misun [1 ,2 ,3 ]
Mercier, Nadege Bonnet [1 ]
Yu, Guihua [4 ,5 ]
Choi, Hee Cheul [2 ,3 ]
Byon, Hye Ryung [1 ]
机构
[1] RIKEN, Byon Initiat Res Unit IRU, Wako, Saitama 3510198, Japan
[2] Pohang Univ Sci & Technol POSTECH, Dept Chem, Pohang 790784, South Korea
[3] Ctr Artificial Low Dimens Elect Syst, Inst Basic Sci, Pohang 790784, South Korea
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[5] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
基金
新加坡国家研究基金会;
关键词
Carbon nanotube; current collector; iodine; aqueous cathode; redox batteries; FLOW BATTERY; ENERGY-STORAGE; PERFORMANCE; ION; ELECTRODE; CATHODE; LIFE; FELT;
D O I
10.1021/nl404784d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A lithium-iodine (Li-I-2) cell using the triiodide/iodide (I-3(-)/I-) rcdox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (similar to 330 W h kg(-1) and similar to 650 W h L-1, respectively, from saturated I-2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I-3(-)/I- aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I-3(-)/I- redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I-2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.
引用
收藏
页码:1085 / 1092
页数:8
相关论文
共 55 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells [J].
Boschloo, Gerrit ;
Hagfeldt, Anders .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1819-1826
[3]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[4]   Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries [J].
Byon, Hye Ryung ;
Gallant, Betar M. ;
Lee, Seung Woo ;
Shao-Horn, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :1037-1045
[5]   Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications [J].
Cheah, Seng Klan ;
Perre, Emilie ;
Rooth, Marten ;
Fondell, Mattis ;
Harsta, Anders ;
Nyholm, Leif ;
Boman, Mats ;
Gustafsson, Torbjorn ;
Lu, Jun ;
Simon, Patrice ;
Edstrom, Kristina .
NANO LETTERS, 2009, 9 (09) :3230-3233
[6]   TEFLON DOUBLE-JUNCTION REFERENCE ELECTRODE FOR USE IN ORGANIC-SOLVENTS [J].
COETZEE, JF ;
GARDNER, CW .
ANALYTICAL CHEMISTRY, 1982, 54 (14) :2625-2626
[7]  
Dean J. A., 1992, LANGES CHEMISTRY HAN
[8]   Vanadium Flow Battery for Energy Storage: Prospects and Challenges [J].
Ding, Cong ;
Zhang, Huamin ;
Li, Xianfeng ;
Liu, Tao ;
Xing, Feng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1281-1294
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube - Enabled Architecture [J].
Evanoff, Kara ;
Khan, Javed ;
Balandin, Alexander A. ;
Magasinski, Alexandre ;
Ready, W. Jud ;
Fuller, Thomas F. ;
Yushin, Gleb .
ADVANCED MATERIALS, 2012, 24 (04) :533-+