Giant enhancement of the magnetocaloric response in Ni-Co-Mn-Ti by rapid solidification

被引:85
作者
Bez, Henrique Neves [1 ]
Pathak, Arjun K. [2 ]
Biswas, Anis [2 ]
Zarkevich, Nikolai [2 ]
Balema, Viktor [2 ]
Mudryk, Yaroslav [2 ]
Johnson, Duane D. [3 ]
Pecharsky, Vitalij K. [3 ]
机构
[1] Univ Fed Santa Catarina, Dept Mech Engn, Polo Res Labs Emerging Technol Cooling & Thermoph, Florianopolis, SC 88040, Brazil
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Mat Sci & Engn, Ames, IA 50011 USA
关键词
Multicaloric; Magnetocaloric; Shape memory; Magnetic refrigeration; INITIO MOLECULAR-DYNAMICS; REFRIGERATION; PERFORMANCE; TRANSITION; BULK;
D O I
10.1016/j.actamat.2019.05.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetocaloric refrigeration is a solid-state cooling approach that promises high energy efficiency and low environmental impact. It remains uncompetitive with conventional vapor-compression technologies due to lack of high-performing materials that exhibit large magnetocaloric effects in low magnetic fields. Here we report a game-changing enhancement of the magnetocaloric response in a transition-metal based Ni-Co-Mn-Ti. Mechanically and chemically stable rapidly solidified ribbons exhibit magnetic entropy changes as high as similar to 27 j.kg(-1)K(-1) for a moderate field change of 2 T, comparable to or larger than the best known materials for near -room temperature applications. The ribbons can be easily manufactured in large quantities and the transition temperature can be adjusted by varying Co concentration. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 51 条
  • [1] A detailed study of the hysteresis in La0.67Ca0.33MnO3
    Bez, Henrique N.
    Nielsen, Kaspar K.
    Smith, Anders
    Bahl, Christian R. H.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 416 : 429 - 433
  • [2] Bollmann W., 1970, CRYSTAL DEFECTS CRYS
  • [3] MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE
    BROWN, GV
    [J]. JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) : 3673 - 3680
  • [4] Dean B., 2018, TECH REP
  • [5] Mixed Magnetism for Refrigeration and Energy Conversion
    Dung, Nguyen H.
    Ou, Zhi Qiang
    Caron, Luana
    Zhang, Lian
    Thanh, Dinh T. Cam
    de Wijs, Gilles A.
    de Groot, Rob A.
    Buschow, K. H. Jurgen
    Bruck, Ekkes
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (06) : 1215 - 1219
  • [6] Magnetocaloric effect: From materials research to refrigeration devices
    Franco, V.
    Blazquez, J. S.
    Ipus, J. J.
    Law, J. Y.
    Moreno-Ramirez, L. M.
    Conde, A.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 93 : 112 - 232
  • [7] Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides -: art. no. 104416
    Fujita, A
    Fujieda, S
    Hasegawa, Y
    Fukamichi, K
    [J]. PHYSICAL REVIEW B, 2003, 67 (10)
  • [8] Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides
    Fukamichi, K
    Fujita, A
    Fujieda, S
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 408 : 307 - 312
  • [9] Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials
    Gottschall, Tino
    Skokov, Konstantin P.
    Benke, Dimitri
    Gruner, Markus E.
    Gutfleisch, Oliver
    [J]. PHYSICAL REVIEW B, 2016, 93 (18)
  • [10] Recent developments in magnetocaloric materials
    Gschneidner, KA
    Pecharsky, VK
    Tsokol, AO
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (06) : 1479 - 1539