Weak Universality in the Disordered Two-Dimensional Antiferromagnetic Potts Model on a Triangular Lattice

被引:7
作者
Babaev, A. B. [1 ,2 ]
Murtazaev, A. K. [1 ,3 ]
机构
[1] Russian Acad Sci, Dagestan Sci Ctr, Amirkhanov Inst Phys, Makhachkala 367003, Russia
[2] Dagestan State Pedag Univ, Makhachkala 367003, Russia
[3] Dagestan State Univ, Makhachkala 367025, Russia
基金
俄罗斯基础研究基金会;
关键词
CRITICAL-BEHAVIOR; MONTE-CARLO; PHASE-TRANSITIONS; THERMODYNAMIC PROPERTIES; NONMAGNETIC IMPURITIES; TRICRITICAL POINT; ISING-MODEL; SIMULATIONS; EXPONENTS;
D O I
10.1134/S0021364018100053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behavior of the disordered two-dimensional antiferromagnetic Potts model with the number of spin states q= 3 on a triangular lattice with disorder in the form of nonmagnetic impurities is studied by the Monte Carlo method. The critical exponents for the susceptibility gamma, magnetization beta, specific heat alpha, and correlation radius nu are calculated in the framework of the finite-size scaling theory at spin concentrations p = 0.90, 0.80, 0.70, and 0.65. It is found that the critical exponents increase with the degree of disorder, whereas the ratios and do not change, thus holding the scaling equality . Such behavior of the critical exponents is related to the weak universality of the critical behavior characteristic of disordered systems. All results are obtained using independent Monte Carlo algorithms, such as the Metropolis and Wolff algorithms.
引用
收藏
页码:624 / 628
页数:5
相关论文
共 38 条
[1]   3-STATE POTTS ANTIFERROMAGNET ON THE TRIANGULAR LATTICE [J].
ADLER, J ;
BRANDT, A ;
JANKE, W ;
SHMULYIAN, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (18) :5117-5129
[2]   ROUNDING OF 1ST-ORDER PHASE-TRANSITIONS IN SYSTEMS WITH QUENCHED DISORDER [J].
AIZENMAN, M ;
WEHR, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2503-2506
[3]   ISING-MODEL MONTE-CARLO SIMULATIONS - DENSITY OF STATES AND MASS GAP [J].
ALVES, NA ;
BERG, BA ;
VILLANOVA, R .
PHYSICAL REVIEW B, 1990, 41 (01) :383-394
[4]  
[Anonymous], 1995, PHYS USP
[5]   Tricritical Point for the Three-Dimensional Disordered Potts Model (q=3) on a Simple Cubic Lattice [J].
Babaev, A. B. ;
Murtazaev, A. K. .
JETP LETTERS, 2017, 105 (06) :384-387
[6]  
Babaev A. B., 2015, Solid State Phenomena, V233-234, P79, DOI 10.4028/www.scientific.net/SSP.233-234.79
[7]   Computer simulation of critical behavior in spin models with nonmagnetic impurities [J].
Babaev, A. B. ;
Murtazaev, A. K. .
LOW TEMPERATURE PHYSICS, 2015, 41 (08) :608-613
[8]   Ising exponents in the two-dimensional site-diluted Ising model [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24) :8379-8383
[9]   3D bond-diluted 4-state Potts model: a Monte Carlo study [J].
Chatelain, C ;
Berche, PE ;
Berche, B ;
Janke, W .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :899-901
[10]   Finite-size scaling study of the surface and bulk critical behavior in the random-bond eight-state Potts model [J].
Chatelain, C ;
Berche, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1670-1673