Recent constructions of low-discrepancy sequences

被引:2
作者
Niederreiter, Harald [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
关键词
Quasi-Monte Carlo method; Low-discrepancy sequence; Digital sequence; Global function field; Ergodic theory; GLOBAL FUNCTION-FIELDS; ERGODIC TRANSFORMATIONS; FINITE-FIELDS;
D O I
10.1016/j.matcom.2014.10.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a survey of the recently developed theory of (u, e, s)-sequences which has led to new constructions of low discrepancy sequences. We also review recent constructions of low-discrepancy sequences by means of ergodic theory. (C) 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
[41]   Recent results and problems on constructions of linear codes from cryptographic functions [J].
Li, Nian ;
Mesnager, Sihem .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05) :965-986
[42]   Gauss periods as constructions of low complexity normal bases [J].
Christopoulou, M. ;
Garefalakis, T. ;
Panario, D. ;
Thomson, D. .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) :43-62
[43]   Gauss periods as constructions of low complexity normal bases [J].
M. Christopoulou ;
T. Garefalakis ;
D. Panario ;
D. Thomson .
Designs, Codes and Cryptography, 2012, 62 :43-62
[44]   Parallel Low Discrepancy Parameter Sweep for Public Health Policy [J].
Chunduri, Sudheer ;
Ghaffari, Meysam ;
Lahijani, Mehran Sadeghi ;
Srinivasan, Ashok ;
Namilae, Sirish .
2018 18TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2018, :291-300
[45]   Optimal periodic L2-discrepancy and diaphony bounds for higher order digital sequences [J].
Pillichshammer, F. .
ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) :252-271
[46]   Optimal periodic L2-discrepancy and diaphony bounds for higher order digital sequences [J].
F. Pillichshammer .
Acta Mathematica Hungarica, 2023, 169 :252-271
[47]   Discrepancy bounds for infinite-dimensional order two digital sequences over F2 [J].
Dick, Josef .
JOURNAL OF NUMBER THEORY, 2014, 136 :204-232
[48]   A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy [J].
Faure, Henri ;
Pillichshammer, Friedrich .
ACTA ARITHMETICA, 2013, 158 (04) :321-340
[49]   Enhanced-Precision LHSMC of Electrical Circuit Considering Low Discrepancy [J].
Park, Eun-suk ;
Oh, Deok-keun ;
Kim, Ju-ho .
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2015, 15 (01) :101-113
[50]   D-FORM SEQUENCES - FAMILIES OF SEQUENCES WITH LOW CORRELATION VALUES AND LARGE LINEAR SPANS [J].
KLAPPER, AM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :423-431