Recent constructions of low-discrepancy sequences

被引:2
作者
Niederreiter, Harald [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
关键词
Quasi-Monte Carlo method; Low-discrepancy sequence; Digital sequence; Global function field; Ergodic theory; GLOBAL FUNCTION-FIELDS; ERGODIC TRANSFORMATIONS; FINITE-FIELDS;
D O I
10.1016/j.matcom.2014.10.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a survey of the recently developed theory of (u, e, s)-sequences which has led to new constructions of low discrepancy sequences. We also review recent constructions of low-discrepancy sequences by means of ergodic theory. (C) 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 1974, UNIFORM DISTRIBUTION
[2]  
[Anonymous], 1992, SIAM, DOI DOI 10.1137/1.9781611970081.FM
[3]  
[Anonymous], HDB FINITE FIELDS
[4]  
[Anonymous], 2010, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
[5]  
Atanassov E.I., 2004, MATH BALKANICA, V18, P15
[6]   DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION) [J].
FAURE, H .
ACTA ARITHMETICA, 1982, 41 (04) :337-351
[7]   A variant of Atanassov's method for (t, s)-sequences and (t, e, s)-sequences [J].
Faure, Henri ;
Lemieux, Christiane .
JOURNAL OF COMPLEXITY, 2014, 30 (05) :620-633
[8]  
Grabner P., 2012, UNIF DISTRIB THEORY, V7, P11
[9]  
Halton J. H., 1960, Numerische Mathematik, V2, P84, DOI [10.1007/BF01386213, DOI 10.1007/BF01386213]
[10]   A construction of (t, s)-sequences with finite-row generating matrices using global function fields [J].
Hofer, Roswitha ;
Niederreiter, Harald .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 21 :97-110