In Vitro Analysis of the Co-Assembly of Type-I and Type-III Collagen

被引:9
作者
Eryilmaz, Esma [1 ,2 ]
Teizer, Winfried [1 ,3 ,4 ]
Hwang, Wonmuk [5 ,6 ]
机构
[1] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[2] Selcuk Univ, Coll Sci, Dept Biotechnol, TR-42003 Konya, Turkey
[3] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[4] Tohoku Univ, WPI Adv Inst Mat Res, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[5] Texas A&M Univ, Dept Biomed Engn & Mat Sci & Engn, College Stn, TX 77843 USA
[6] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
关键词
AFM; Biomimetic surface; Collagen; Extracellular matrix; Heterogeneous assembly; Macromolecular assembly; ATOMIC-FORCE MICROSCOPY; FIBRIL DIAMETER; FIBRILLOGENESIS; SURFACES; MATRIX; FIBRONECTIN; SUBSTRATE; CLEAVAGE; TENDON; GROWTH;
D O I
10.1007/s12195-016-0466-3
中图分类号
Q813 [细胞工程];
学科分类号
摘要
An important step towards achieving functional diversity of biomimetic surfaces is to better understand the co-assembly of the extracellular matrix components. For this, we study type-I and type-III collagen, the two major collagen types in the extracellular matrix. By using atomic force microscopy, custom image analysis, and kinetic modeling, we study their homotypic and heterotypic assembly. We find that the growth rate and thickness of heterotypic fibrils decrease as the fraction of type-III collagen increases, but the fibril nucleation rate is maximal at an intermediate fraction of type-III. This is because the more hydrophobic type-I collagen nucleates fast and grows in both longitudinal and lateral directions, whereas more hydrophilic type-III limits lateral growth of fibrils, driving more monomers to nucleate additional fibrils. This demonstrates that subtle differences in physico-chemical properties of similar molecules can be used to fine-tune their assembly behavior.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 57 条
[1]  
[Anonymous], 2008, COLLAGEN STRUCTURE M
[2]   Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix [J].
Bierbaum, S ;
Beutner, R ;
Hanke, T ;
Scharnweber, D ;
Hempel, U ;
Worch, H .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (02) :421-430
[3]   COLLAGEN FIBRILLOGENESIS INVITRO - COMPARISON OF TYPE-I, TYPE-II, AND TYPE-III [J].
BIRK, DE ;
SILVER, FH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1984, 235 (01) :178-185
[4]  
Birk DE, 1997, EUR J CELL BIOL, V72, P352
[5]   Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly [J].
Birk, DE .
MICRON, 2001, 32 (03) :223-237
[6]   Collagen fibrils: Nanoscale ropes [J].
Bozec, Laurent ;
van der Heijden, Gert ;
Horton, Michael .
BIOPHYSICAL JOURNAL, 2007, 92 (01) :70-75
[7]   Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules [J].
Bruckner, Peter .
CELL AND TISSUE RESEARCH, 2010, 339 (01) :7-18
[8]   Control of heterotypic fibril formation by collages V is determined by chain stoichiometry [J].
Chanut-Delalande, H ;
Fichard, A ;
Bernocco, S ;
Garrone, R ;
Hulmes, DJS ;
Ruggiero, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24352-24359
[9]   Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications [J].
Cisneros, David A. ;
Friedrichs, Jens ;
Taubenberger, Anna ;
Franz, Clemens M. ;
Muller, Daniel J. .
SMALL, 2007, 3 (06) :956-963
[10]   Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy [J].
Cisneros, David A. ;
Hung, Carlos ;
Franz, Clemens A. ;
Muller, Daniel J. .
JOURNAL OF STRUCTURAL BIOLOGY, 2006, 154 (03) :232-245