In situ construction of sulfated TiO2 nanoparticles with TiOSO4 for enhanced photocatalytic hydrogen production

被引:13
|
作者
Shao, Xueqing [1 ]
Xiao, Feng [1 ]
Zhao, Xueying [1 ]
Hou, Zhiyan [1 ]
Yue, Fan [1 ]
Wang, Lu [1 ]
Wu, Ronglan [1 ]
Wang, Jide [1 ]
Su, Xintai [2 ,3 ]
Yang, Chao [1 ]
机构
[1] Xinjiang Univ, Minist Key Lab Oil & Gas Fine Chem, Sch Chem Engn & Technol, Urumqi 830046, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Key Lab Pollut Control & Ecosyst Restorat Ind Clu, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab Solid Wastes Pollut Contro, Guangzhou 510006, Guangdong, Peoples R China
关键词
VISIBLE-LIGHT PHOTOCATALYSIS; N-DOPED TIO2; H-2; EVOLUTION; WATER; SURFACE; NANOFIBERS; NANOSHEETS; REDUCTION; COMPOSITE; OXIDATION;
D O I
10.1039/d0nr06436j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic hydrogen production from water is a promising method to obtain clean energy in the future. In this work, the sulfated TiO2 photocatalyst is successfully constructed in situ via a soft-templated method for photocatalytic water splitting to produce hydrogen. The content of sulfate species in TiO2 can be tuned by changing the amount of the surfactant. The photocatalyst with the appropriate content of sulfate ions exhibits an apparent quantum efficiency (AQE) of 3.9% at 365 nm and a high hydrogen production rate of 24.32 mmol h(-1) g(-1), which is 1.65 times that of commercial TiO2 (P25). The optimized photocatalyst has excellent photocatalytic activity for hydrogen evolution benefitting from the presence of sulfate ions on the surface of TiO2, large surface area and oxygen vacancies, which facilitates the rapid migration of photo-generated electrons to its surface and the improvement of the separation efficiency of photo-generated carriers. This work may inspire the rational design and the development of high-efficiency photocatalysts.
引用
收藏
页码:901 / 911
页数:11
相关论文
共 50 条
  • [1] Coagulation and heterocoagulation interactions of components in aqueous dispersed systems microcrystalline cellulose–TiO2, microcrystalline cellulose–TiOSO4, and TiO2–TiOSO4
    V. S. Imramova
    N. L. Koroleva
    A. V. Lorentsson
    Yu. M. Chernoberezhskii
    Russian Journal of Applied Chemistry, 2017, 90 : 1480 - 1483
  • [2] 水解工业TiOSO4制备球形TiO2
    扈玫珑
    白晨光
    徐盛明
    徐刚
    梁栋
    功能材料, 2009, 40 (06) : 1049 - 1052
  • [3] Kinetics of the TiO2 films growth at the hydrothermal hydrolysis of TiOSO4
    D. V. Bavykin
    E. N. Savinov
    P. G. Smirniotis
    Reaction Kinetics and Catalysis Letters, 2003, 79 : 77 - 84
  • [4] Nanometer TiO2 Photocatalyst Prepared by Thermohydrolysis of TiOSO4 Solution
    戴智铭
    陈爱平
    杨阳
    朱中南
    顾明元
    华东理工大学学报(自然科学版), 2002, (02) : 180 - 183
  • [5] Formation of monodispersed anatase TiO2 spheres from TiOSO4 for enhanced hydrogen evolution of TiO2/g-C3N4 photocatalysts
    Yang, Fan
    Zhang, Huihui
    Wu, Zhi-Hai
    Xiang, Lan
    Yu, Yang-Xin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [6] Kinetics of the TiO2 films growth at the hydrothermal hydrolysis of TiOSO4
    Bavykin, DV
    Savinov, EN
    Smirniotis, PG
    REACTION KINETICS AND CATALYSIS LETTERS, 2003, 79 (01): : 77 - 84
  • [7] 由TiOSO4水解-沉淀制备TiO2薄膜
    徐明霞
    徐廷献
    刘宁
    硅酸盐学报, 1997, (02) : 90 - 94
  • [8] Preparation and Photoactivity of Nanocrystalline TiO2 Powders Obtained by Thermohydrolysis of TiOSO4
    A. Di Paola
    M. Bellardita
    L. Palmisano
    R. Amadelli
    L. Samiolo
    Catalysis Letters, 2013, 143 : 844 - 852
  • [9] IN SITU X-RAY SCATTERING STUDY OF HYDROTHERMAL SYNTHESIS OF ANATASE TIO2 NANOPARTICLES FROM COMMERCIAL PRECURSOR TIOSO4
    Frederik, Sondergaard-Pedersen
    Broge, Nils Lau Nyborg
    Yu, Jinlong
    Mamakhel, Aref
    Beyer, Jonas
    Iversen, Brummerstedt Bo
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : E643 - E643
  • [10] Preparation and Photoactivity of Nanocrystalline TiO2 Powders Obtained by Thermohydrolysis of TiOSO4
    Di Paola, A.
    Bellardita, M.
    Palmisano, L.
    Amadelli, R.
    Samiolo, L.
    CATALYSIS LETTERS, 2013, 143 (08) : 844 - 852