Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model

被引:12
作者
Hu, Yan-Gao [1 ,2 ]
Li, Y. F. [2 ]
Han, J. [2 ]
Hu, C. P. [3 ]
Chen, Zh. H. [1 ,2 ]
Gu, S. T. [1 ,2 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab New Technol Construct Cities Mountain Are, Chongqing 400045, Peoples R China
[2] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[3] Qingdao Inst Technol, Qingdao 266300, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
STRESS TRANSFER; LOAD-TRANSFER; STRENGTH; MECHANICS; BEHAVIOR;
D O I
10.1007/s00707-019-02426-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Interfacial stress transfer of single-walled carbon nanotube-reinforced polymer composites subjected to uniaxial tension was investigated by a newly developed shear-lag model integrated with a spring layer model. A linear relationship between the tangential relative displacement and the interfacial shear stress was assumed for the interface which is determined by van der Waals forces. The interface stiffness parameter was determined through comparing the stress distribution of the shear-lag model with multiscale simulation results. The effect of the interface stiffness and the nanotube's aspect ratios on the distribution of stress in CNT-reinforced composites was studied.
引用
收藏
页码:2771 / 2782
页数:12
相关论文
共 32 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Multiscale modeling of carbon nanotube epoxy composites [J].
Alian, A. R. ;
Kundalwal, S. I. ;
Meguid, S. A. .
POLYMER, 2015, 70 :149-160
[4]   An improved shear-lag model for carbon nanotube reinforced polymer composites [J].
Ang, Kok Keng ;
Ahmed, Khondaker Sakil .
COMPOSITES PART B-ENGINEERING, 2013, 50 :7-14
[5]   Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method [J].
Ansari, R. ;
Rouhi, S. ;
Momen, A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 119 (03) :1039-1045
[6]   Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading [J].
Ayatollahi, M. R. ;
Shadlou, S. ;
Shokrieh, M. M. .
COMPOSITE STRUCTURES, 2011, 93 (09) :2250-2259
[7]   Measurement of carbon nanotube-polymer interfacial strength [J].
Barber, AH ;
Cohen, SR ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2003, 82 (23) :4140-4142
[8]   Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites [J].
Chang, BH ;
Liu, ZQ ;
Sun, LF ;
Tang, DS ;
Zhou, WY ;
Wang, G ;
Qian, LX ;
Xie, SS ;
Fen, JH ;
Wan, MX .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 119 (1-2) :41-48
[9]   Direct Measurements of the Mechanical Strength of Carbon Nanotube-Poly(methyl methacrylate) Interfaces [J].
Chen, Xiaoming ;
Zheng, Meng ;
Park, Cheol ;
Ke, Changhong .
SMALL, 2013, 9 (19) :3345-3351
[10]   THE ELASTICITY AND STRENGTH OF PAPER AND OTHER FIBROUS MATERIALS [J].
COX, HL .
BRITISH JOURNAL OF APPLIED PHYSICS, 1952, 3 (MAR) :72-79