COMPACTNESS OF HANKEL OPERATORS ON HARDY-SOBOLEV SPACES OF THE POLYDISK

被引:1
作者
Ahern, Patrick [1 ]
Youssfi, El Hassan [3 ]
Zhu, Kehe [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53705 USA
[2] SUNY Albany, Dept Math, Albany, NY 12222 USA
[3] Univ Aix Marseille 1, CNRS, LATP, CMI,UMR 6632, F-13453 Marseille 13, France
基金
美国国家科学基金会;
关键词
Hankel operators; Hardy spaces; polydisk; DIRICHLET TYPE SPACES; CARLESON MEASURES; MULTIPLIERS; BMO;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a big Hankel operator defined on certain Hardy-Sobolev spaces of the polydisk D-n, n > 1, cannot be compact unless it is the zero operator. This result was obtained by Cotlar and Sadosky in 1993 for the classical Hardy space, but our approach here is much different and our result is more general.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 15 条
[1]   Hankel operators with unbounded symbols [J].
Ahern, P. ;
Youssfi, E. H. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) :1865-1873
[2]   On a conjecture of Cotlar and Sadosky on multidimensional Hankel operators [J].
Bakonyi, M ;
Timotin, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (10) :1071-1075
[3]   BMO IN THE BERGMAN METRIC ON BOUNDED SYMMETRICAL DOMAINS [J].
BEKOLLE, D ;
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (02) :310-350
[4]   Two distinguished subspaces of product BMO and Nehari-AAK theory for Hankel operators on the torus [J].
Cotlar, M ;
Sadosky, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (03) :273-304
[5]   ABSTRACT, WEIGHTED, AND MULTIDIMENSIONAL ADAMJAN-AROV-KREIN THEOREMS, AND THE SINGULAR NUMBERS OF SARASON COMMUTANTS [J].
COTLAR, M ;
SADOSKY, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (02) :169-201
[6]   Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures [J].
Ferguson, SH ;
Sadosky, C .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1) :239-267
[7]   A NEW CHARACTERIZATION OF DIRICHLET TYPE SPACES AND APPLICATIONS [J].
ROCHBERG, R ;
WU, ZJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1993, 37 (01) :101-122
[8]   MULTIPLIERS OF THE DIRICHLET SPACE [J].
STEGENGA, DA .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (01) :113-139
[9]   HANKEL AND TOEPLITZ-OPERATORS ON DIRICHLET SPACES [J].
WU, ZJ .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (03) :503-525
[10]   THE PREDUAL AND 2ND PREDUAL OF W(A) [J].
WU, ZJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (02) :314-334