Sound Velocity of Liquid Fe-P at High Pressure

被引:6
作者
Kinoshita, Daisuke [1 ]
Nakajima, Yoichi [1 ,2 ]
Kuwayama, Yasuhiro [2 ,3 ]
Hirose, Kei [3 ,4 ]
Iwamoto, Asaki [1 ]
Ishikawa, Daisuke [2 ,5 ]
Baron, Alfred Q. R. [2 ]
机构
[1] Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan
[2] RIKEN SPring 8 Ctr, Mat Dynam Lab, Mikazuki, Hyogo 6795148, Japan
[3] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan
[4] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528550, Japan
[5] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2020年 / 257卷 / 11期
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Earth' s core; high pressure; inelastic X-ray scattering; liquid Fe alloys; phosphorus content; sound velocity; OUTER CORE CONDITIONS; DENSITY-MEASUREMENTS; IRON; EARTHS; ALLOYS; BEHAVIOR; STATE;
D O I
10.1002/pssb.202000171
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The longitudinal sound wave (P-wave) velocity of liquid Fe75P25 alloy is determined up to 60 GPa using inelastic X-ray scattering with laser-heated diamond anvil cell. Phosphorus is found to have negligible effect on the P-wave velocity of liquid Fe under high-pressure conditions. Based on the P-wave and pressure data, an adiabatic Murnaghan equation of state for liquid Fe75P25 is constructed, yielding to the adiabatic bulk modulus K-S0 = 94.9 +/- 7.1 GPa and its pressure derivative K'(S) = 3.56 +/- 0.18, respectively, at 1 bar with the density of 5.94 g cm(-3) at 2000 K. The addition of phosphorus decreases the bulk modulus and density of liquid Fe under high-pressure conditions, which minimizes the effect on the velocity. Using the equation of state, the P-wave velocity and density of liquid Fe75P25 are estimated under Earth's liquid outer core conditions. Comparison with seismological observations suggests an upper limit of phosphorus in liquid core of 14.6 +/- 3.9 wt%.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] THE CHEMICAL-COMPOSITION OF THE EARTH
    ALLEGRE, CJ
    POIRIER, JP
    HUMLER, E
    HOFMANN, AW
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 1995, 134 (3-4) : 515 - 526
  • [2] AN EQUATION OF STATE FOR LIQUID-IRON AND IMPLICATIONS FOR THE EARTHS CORE
    ANDERSON, WW
    AHRENS, TJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B3) : 4273 - 4284
  • [3] Experimental system for X-ray magnetic diffraction under extreme conditions
    Arakawa, E
    Ito, M
    Ishimatsu, N
    Suzuki, M
    Kawamura, N
    Sakurai, H
    Itoh, F
    Honma, Y
    Ochiai, A
    Akahama, Y
    Maruyama, H
    Namikawa, K
    Shimomura, O
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2004, 65 (12) : 2089 - 2092
  • [4] A seismologically consistent compositional model of Earth's core
    Badro, James
    Cote, Alexander S.
    Brodholt, John P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) : 7542 - 7545
  • [5] Baron A. Q. R., 2015, SYNCHROTRON LIGHT SO, P1, DOI DOI 10.1007/978-3-319-04507-8_41-1
  • [6] Baron A. Q. R., 2010, SPring8 Inf. Newsl, V15, P14
  • [7] Auxiliary Optics for meV-Resolved Inelastic X-Ray Scattering at SPring-8: Microfocus, Analyzer Masks, Soller Slit, Soller Screen, and Beam Position Monitor
    Baron, Alfred Q. R.
    Ishikawa, Daisuke
    Fukui, Hiroshi
    Nakajima, Yoichi
    [J]. 13TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI2018), 2019, 2054
  • [8] ELASTICITY AND CONSTITUTION OF THE EARTH INTERIOR
    BIRCH, F
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1952, 57 (02): : 227 - 286
  • [9] Buchwald V.F., 1975, HDB IRON METEORITES, V1
  • [10] PRELIMINARY REFERENCE EARTH MODEL
    DZIEWONSKI, AM
    ANDERSON, DL
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1981, 25 (04) : 297 - 356