Remainder Pade approximants for the exponential function

被引:11
作者
Prevost, Marc
Rivoal, Tanguy
机构
[1] Univ Littoral, Ctr Univ Mi Voix, LMPA Joseph Liouville, F-62228 Calais, France
[2] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
关键词
remainder Pade approximants; exponential function; multiple Charlier polynomials;
D O I
10.1007/s00365-006-0635-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following our earlier research, we propose a new method for obtaining the complete Pad e table of the exponential function. It is based on an explicit construction of certain Pade approximants, not for the usual power series for exp at 0 but for a formal power series related in a simple way to the remainder term of the power series for exp. This surprising and nontrivial coincidence is proved more generally for type II simultaneous Pad e approximants for a family (exp(a(j)z))(j=1),...,r with distinct complex a's and we recover Hermite's classical formulas. The proof uses certain discrete multiple orthogonal polynomials recently introduced by Arvesu, Coussement, and van Assche, which generalize the classical Charlier orthogonal polynomials.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 17 条
  • [1] Apery R., 1979, Asterisque, V61, P11
  • [2] Some discrete multiple orthogonal polynomials
    Arvesú, J
    Coussement, J
    Van Assehe, W
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 19 - 45
  • [3] Multiple Wilson and Jacobi-Pineiro polynomials
    Beckermann, B
    Coussement, J
    Van Assche, W
    [J]. JOURNAL OF APPROXIMATION THEORY, 2005, 132 (02) : 155 - 181
  • [4] BEUKERS F, 1981, TOPICS CLASSICAL NUM, P219
  • [5] Carlitz L., 1957, CAN J MATH, V9, P188, DOI 10.4153/CJM-1957-021-9
  • [6] Pade approximants and equilibrated hypergeometric series
    Fischler, S
    Rivoal, T
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (10): : 1369 - 1394
  • [7] Hermite C., 1873, CR HEBD ACAD SCI, V77, P74
  • [8] Hermite C., 1873, CR HEBD ACAD SCI, V77, P226
  • [9] Hermite C., 1873, C. R. Acad. Sci. Paris, V77, P285
  • [10] Hermite C., 1873, CR HEBD ACAD SCI, V77, P18