Deep Learning architectures used in computer vision, natural language and speech processing, unsupervised clustering, etc. have become highly complex and application-specific in recent times. Despite existing automated feature engineering techniques, building such complex models still requires extensive domain knowledge or a huge infrastructure for employing techniques such as Neural Architecture Search (NAS). Further, many industrial applications need in-premises decision-making close to sensors, thus making deployment of deep learning models on edge devices a desirable and often necessary option. Instead of freshly designing application-specific Deep Learning models, the transformation of already built models can achieve faster time to market and cost reduction. In this work, we present an efficient re-training-free model compression method that searches for the best hyper-parameters to reduce the model size and latency without losing any accuracy. Moreover, our proposed method takes into account any drop in accuracy due to hardware acceleration, when a Deep Neural Network is executed on accelerator hardware.