Dominator and total dominator coloring of circulant graph Cn (1, 2)

被引:2
作者
Chen, Qin [1 ]
机构
[1] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
关键词
Dominator coloring; Total dominator coloring; Dominator chromatic number; Total dominator chromatic number; Circulant graph; CHROMATIC NUMBER;
D O I
10.1080/09720529.2021.1885807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dominator coloring (resp. total dominator coloring) of a graph G is a proper coloring of the vertices of G in which each closed neighborhood (resp. open neighborhood) of every vertex of G contains a color class. The dominator chromatic number (resp. total dominator chromatic number) of G is the minimum number of colors required for a dominator coloring (resp. total dominator coloring) of G. In this paper, we determine the dominator chromatic number and total dominator chromatic number of the circulant graph C-n (1, 2).
引用
收藏
页码:2549 / 2567
页数:19
相关论文
共 50 条
[31]   Perfect colorings of the infinite circulant graph with distances 1 and 2 [J].
Lisitsyna M.A. ;
Parshina O.G. .
Journal of Applied and Industrial Mathematics, 2017, 11 (03) :381-388
[32]   INVERSE DOMINATION NUMBER OF CIRCULANT GRAPH G(n; ± {1, 2, 3}) [J].
Cynthia, V. Jude Annie ;
Kavitha, A. .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 23 (02) :75-83
[33]   Equitable total coloring of Kn ödel graph WΔ,n [J].
Tong, Chunling ;
Dong, Aijun ;
Wang, Shouqiang ;
Yang, Yuansheng .
Journal of Computational Information Systems, 2014, 10 (22) :9821-9829
[34]   2-Rainbow Domination of the Circulant Graph C(n;{1,3}) [J].
Fu, Xueliang ;
Wu, Xiaofeng ;
Dong, Gaifang ;
Li, Honghui ;
Guo, William .
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON TEST, MEASUREMENT AND COMPUTATIONAL METHODS (TMCM 2015), 2015, 26 :123-129
[35]   On 2 and 3-Rainbow Domination Number of Circulant Graph G(n;±{1, 2, 3}) [J].
Cynthia, V. Jude Annie ;
Kavitha, A. .
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (02) :661-670
[36]   ACYCLIC COLORING OF EXTENDED DUPLICATE GRAPH OF FIRECRACKER (Fn,2) GRAPH FAMILIES [J].
Sarma, C. Shobana ;
Thirusangu, K. .
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09) :1897-1907
[37]   Coloring the square of the Kneser graph KG(2k+1, k) and the Schrijver graph SG(2k+2, k) [J].
Chen, Jun-Yo ;
Lih, Ko-Wei ;
Wu, JiaoJiao .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) :170-176
[38]   Proof of a conjecture on edge coloring of the Kneser graph K(t, 2) [J].
Panneerselvam, L. ;
Ganesamurthy, S. ;
Muthusamy, A. ;
Srimathi, R. .
DISCRETE MATHEMATICS LETTERS, 2023, 12 :217-221
[39]   THE PROJECTIVE PLANE CROSSING NUMBER OF THE CIRCULANT GRAPH C(3k; {1, k}) [J].
Ho, Pak Tung .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) :91-108
[40]   Star Coloring and Tree-width of the Kneser Graph KG(n, 2) [J].
Omoomi, Behnaz ;
Roshanbin, Elham .
UTILITAS MATHEMATICA, 2017, 102 :149-160