Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation

被引:98
|
作者
Xu, Yang [1 ,2 ,3 ]
Wu, Zebin [1 ,2 ,3 ]
Chanussot, Jocelyn [4 ]
Wei, Zhihui [1 ,2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Intelligent Percept & Syst High Dimens In, Nanjing 210094, Peoples R China
[3] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Peoples R China
[4] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,LJK, F-38000 Grenoble, France
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Tensors; Sparse matrices; Hyperspectral imaging; Spatial resolution; Fuses; Hyperspectral image (HSI); multiscale; multispectral image (MSI); super-resolution; tensor ring (TR); FUSION; FACTORIZATION; REGRESSION;
D O I
10.1109/TNNLS.2019.2957527
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) super-resolution is a hot topic in remote sensing and computer vision. Recently, tensor analysis has been proven to be an efficient technology for HSI image processing. However, the existing tensor-based methods of HSI super-resolution are not able to capture the high-order correlations in HSI. In this article, we propose to learn a high-order coupled tensor ring (TR) representation for HSI super-resolution. The proposed method first tensorizes the HSI to be estimated into a high-order tensor in which multiscale spatial structures and the original spectral structure are represented. Then, a coupled TR representation model is proposed to fuse the low-resolution HSI (LR-HSI) and high-resolution multispectral image (HR-MSI). In the proposed model, some latent core tensors in TR of the LR-HSI and the HR-MSI are shared, and we use the relationship between the spectral core tensors to reconstruct the HSI. In addition, the graph-Laplacian regularization is introduced to the spectral core tensors to preserve the spectral information. To enhance the robustness of the proposed model, Frobenius norm regularizations are introduced to the other core tensors. Experimental results on both synthetic and real data sets show that the proposed method achieves the state-of-the-art super-resolution performance.
引用
收藏
页码:4747 / 4760
页数:14
相关论文
共 50 条
  • [21] CNN-Based Super-Resolution of Hyperspectral Images
    Arun, P. V.
    Buddhiraju, Krishna Mohan
    Porwal, Alok
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6106 - 6121
  • [22] Hyperspectral Image Super-Resolution via Deep Prior Regularization With Parameter Estimation
    Wang, Xiuheng
    Chen, Jie
    Wei, Qi
    Richard, Cedric
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1708 - 1723
  • [23] Transferable Multiple Subspace Learning for Hyperspectral Image Super-Resolution
    Bu, Yuanyang
    Zhao, Yongqiang
    Xue, Jize
    Yao, Jiaxin
    Chan, Jonathan Cheung-Wai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [24] Hyperspectral Image Super-Resolution via Subspace-Based Low Tensor Multi-Rank Regularization
    Dian, Renwei
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5135 - 5146
  • [25] Hyperspectral Image Super-Resolution via Adaptive Factor Group Sparsity Regularization-Based Subspace Representation
    Peng, Yidong
    Li, Weisheng
    Luo, Xiaobo
    Du, Jiao
    REMOTE SENSING, 2023, 15 (19)
  • [26] GuidedNet: A General CNN Fusion Framework via High-Resolution Guidance for Hyperspectral Image Super-Resolution
    Ran, Ran
    Deng, Liang-Jian
    Jiang, Tai-Xiang
    Hu, Jin-Fan
    Chanussot, Jocelyn
    Vivone, Gemine
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4148 - 4161
  • [27] SUPER-RESOLUTION OF HYPERSPECTRAL IMAGES USING LOCAL SPECTRAL UNMIXING
    Licciardi, G.
    Veganzones, M. A.
    Simoes, M.
    Bioucas, J.
    Chanussot, J.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [28] Super-resolution of hyperspectral image via superpixel-based sparse representation
    Fang, Leyuan
    Zhuo, Haijie
    Li, Shutao
    NEUROCOMPUTING, 2018, 273 : 171 - 177
  • [29] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [30] Hyperspectral Image Joint Super-Resolution via Local Implicit Spatial-Spectral Function Learning
    Zhang, Yanan
    Zhang, Jizhou
    Han, Sijia
    IEEE PHOTONICS JOURNAL, 2024, 16 (03): : 1 - 12