Investigation of membrane electrode assembly (MEA) processing parameters on performance for wholly aromatic hydrocarbon-based proton exchange membranes

被引:20
作者
Roy, Abhishek [1 ]
Hickner, Michael A. [1 ]
Lane, Ozma [1 ]
McGrath, J. E. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA
关键词
Membrane electrode assembly; Proton conductivity; Fuel cell performance; POLY(ARYLENE ETHER SULFONE); FUEL-CELLS; MULTIBLOCK COPOLYMERS; MONOMER; SYSTEMS; NAFION; STATE; WATER;
D O I
10.1016/j.jpowsour.2009.02.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The membrane electrode assembly (MEA) is well known to be the critical component of a proton exchange membrane fuel cell (PEMFC). The interface between the membrane and the electrodes plays a significant role in controlling overall performance and durability. Moreover, the processing parameters to produce MEA have a major influence on the interface and allow novel materials to be evaluated in high performance fuel cell devices. In this paper. several parameters influencing processing conditions for MEAs with membranes based on novel wholly aromatic polymers were investigated and optimized Processing parameters are suggested. This paper demonstrates that the Water content present in the copolymers during MEA fabrication significantly influences the nature of the interface and, consequently, fuel cell performance. The optimized fabrication temperature reflects viscoelastic behavior and appears to be close to the hydrated glass transition or alpha relaxation temperature of the copolymer. It is Suggested to be a function of both water content, which can plasticize and reduce T-g, and molecular weight of the copolymer. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:550 / 554
页数:5
相关论文
共 29 条
[1]   Recent advances in fuel cell technology and its applications [J].
Acres, GJK .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :60-66
[2]   Recent advances in materials for fuel cells [J].
Brandon, NP ;
Skinner, S ;
Steele, BCH .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :183-213
[3]  
Carrette L, 2000, CHEMPHYSCHEM, V1, P162, DOI 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO
[4]  
2-Z
[5]   Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis [J].
Einsla, BR ;
Hong, YT ;
Kim, YS ;
Wang, F ;
Gunduz, N ;
Mcgrath, JE .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (04) :862-874
[6]   Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell [J].
Ghassemi, H ;
McGrath, JE ;
Zawodzinski, TA .
POLYMER, 2006, 47 (11) :4132-4139
[7]   New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes.: II [J].
Ghassemi, H ;
Ndip, G ;
McGrath, JE .
POLYMER, 2004, 45 (17) :5855-5862
[8]   Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes.: I [J].
Ghassemi, H ;
McGrath, JE .
POLYMER, 2004, 45 (17) :5847-5854
[9]   Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: Synthesis, characterization, and performance - A topical review [J].
Harrison, WL ;
Hickner, MA ;
Kim, YS ;
McGrath, JE .
FUEL CELLS, 2005, 5 (02) :201-212
[10]   Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I [J].
Harrison, WL ;
Wang, F ;
Mecham, JB ;
Bhanu, VA ;
Hill, M ;
Kim, YS ;
McGrath, JE .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (14) :2264-2276