Clamping Instability and van der Waals Forces in Carbon Nanotube Mechanical Resonators

被引:21
作者
Aykol, Mehmet [1 ]
Hou, Bingya [1 ]
Dhall, Rohan [1 ]
Chang, Shun-Wen [2 ]
Branham, William [1 ]
Qiu, Jing [3 ]
Cronin, Stephen B. [1 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
关键词
MEMS; resonator; mechanical; nanotube; clamping; suspended; OSCILLATOR; SILICON;
D O I
10.1021/nl500096p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the role of weak clamping forces, typically assumed to be infinite, in carbon nanotube mechanical resonators. Due to these forces, we observe a hysteretic clamping and unclamping of the nanotube device that results in a discrete drop in the mechanical resonance frequency on the order of 5-20 MHz, when the temperature is cycled between 340 and 375 K. This instability in the resonant frequency results from the nanotube unpinning from the electrode/trench sidewall where it is bound weakly by van der Waals forces. Interestingly, this unpinning does not affect the Q-factor of the resonance, since the clamping is still governed by van der Waals forces above and below the unpinning. For a 1 mu m device, the drop observed in resonance frequency corresponds to a change in nanotube length of approximately 50-65 nm. On the basis of these findings, we introduce a new model, which includes a finite tension-around zero gate voltage due to van der Waals forces and shows better agreement with the experimental data than the perfect clamping model. From the gate dependence of the mechanical resonance frequency, we extract the van der Waals clamping force to be 1.8 pN. The mechanical resonance frequency exhibits a striking temperature dependence below 200 K attributed to a temperature-dependent slack arising from the competition between the van der Waals force and the thermal fluctuations in the suspended nanotube.
引用
收藏
页码:2426 / 2430
页数:5
相关论文
共 22 条
[1]   Electromechanical resonance behavior of suspended single-walled carbon nanotubes under high bias voltages [J].
Aykol, Mehmet ;
Branham, William ;
Liu, Zuwei ;
Amer, Moh R. ;
Hsu, I-Kai ;
Dhall, Rohan ;
Chang, Shun-Wen ;
Cronin, Stephen B. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (08)
[2]   Fluctuation broadening in carbon nanotube resonators [J].
Barnard, Arthur W. ;
Sazonova, Vera ;
van der Zande, Arend M. ;
McEuen, Paul L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) :19093-19096
[3]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[4]   Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes [J].
Bushmaker, Adam W. ;
Deshpande, Vikram V. ;
Bockrath, Marc W. ;
Cronin, Stephen B. .
NANO LETTERS, 2007, 7 (12) :3618-3622
[5]  
Chaste J, 2012, NAT NANOTECHNOL, V7, P300, DOI [10.1038/NNANO.2012.42, 10.1038/nnano.2012.42]
[6]   Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators [J].
Chiu, Hsin-Ying ;
Hung, Peter ;
Postma, Henk W. Ch. ;
Bockrath, Marc .
NANO LETTERS, 2008, 8 (12) :4342-4346
[7]   Symmetry breaking in a mechanical resonator made from a carbon nanotube [J].
Eichler, A. ;
Moser, J. ;
Dykman, M. I. ;
Bachtold, A. .
NATURE COMMUNICATIONS, 2013, 4
[8]  
Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/NNANO.2011.71, 10.1038/nnano.2011.71]
[9]   Mechanical detection of carbon nanotube resonator vibrations [J].
Garcia-Sanchez, D. ;
Paulo, A. San ;
Esplandiu, M. J. ;
Perez-Murano, F. ;
Forro, L. ;
Aguasca, A. ;
Bachtold, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[10]   Digital and FM Demodulation of a Doubly Clamped Single-Walled Carbon-Nanotube Oscillator: Towards a Nanotube Cell Phone [J].
Gouttenoire, Vincent ;
Barois, Thomas ;
Perisanu, Sorin ;
Leclercq, Jean-Louis ;
Purcell, Stephen T. ;
Vincent, Pascal ;
Ayari, Anthony .
SMALL, 2010, 6 (09) :1060-1065