Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale

被引:51
|
作者
Zakirov, Andrey [1 ]
Belousov, Sergei [1 ]
Bogdanova, Maria [1 ]
Korneev, Boris [1 ]
Stepanov, Andrey [1 ]
Perepelkina, Anastasia [1 ]
Levchenko, Vadim [1 ]
Meshkov, Andrey [2 ]
Potapkin, Boris [1 ]
机构
[1] Kintech Lab Ltd, 3rd Khoroshevskaya St 12, Moscow 123298, Russia
[2] Gen Elect Global Res Ctr, 1 Res Circle, Niskayuna, NY 12309 USA
关键词
Powder bed fusion; 3D mesoscale modeling; Metal alloys; Lattice Boltzmann method; High-performance computing; LATTICE BOLTZMANN METHOD; MELT FLOW; MICROSTRUCTURE; ABSORPTIVITY; FLUID; CHALLENGES; DYNAMICS;
D O I
10.1016/j.addma.2020.101236
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the results of 3D modeling of the laser and electron beam powder bed fusion process at the mesoscale with an in-house developed advanced multiphysical numerical tool. The hydrodynamics and thermal conductivity core of the tool is based on the lattice Boltzmann method. The numerical tool takes into account the random distributions of powder particles by size in a layer and the propagation of the laser (electron beam) with a full ray tracing (Monte Carlo) model that includes multiple reflections, phase transitions, thermal conductivity, and detailed liquid dynamics of the molten metal, influenced by evaporation of the metal and the recoil pressure. The model has been validated by a number of physical tests. We numerically demonstrate a strong dependence of the net energy absorption of the incoming heat source beam by the powder bed and melt pool on the beam power. We show the ability of our model to predict the measurable properties of a single track on a bare substrate as well as on a powder layer. We obtain good agreement with experimental data for the depth, width and shape of a track for a number of materials and a wide range of energy source parameters. We further apply our model to the simulation of the entire layer formation and demonstrate the strong dependence of the resulting layer morphology on the hatch spacing. The presented model could be very helpful for optimizing the additive process without carrying out a large number of experiments in a common trial-and-error method, developing process parameters for new materials, and assessing novel modalities of powder bed fusion additive manufacturing.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    MATERIALS & DESIGN, 2020, 193
  • [32] Pulsed laser powder bed fusion additive manufacturing of A356
    Chou, S. C.
    Trask, M.
    Danovitch, J.
    Wang, X. L.
    Choi, J. P.
    Brochu, M.
    MATERIALS CHARACTERIZATION, 2018, 143 : 27 - 33
  • [33] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J.P.
    LaLonde, A.D.
    Ma, J.
    Materials and Design, 2020, 193
  • [34] Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing
    Knapp, G. L.
    Raghavan, N.
    Plotkowski, A.
    DebRoy, T.
    ADDITIVE MANUFACTURING, 2019, 25 : 511 - 521
  • [35] Temperature Measurements in Powder-Bed Electron Beam Additive Manufacturing
    Price, Steven
    Lydon, James
    Cooper, Ken
    Chou, Kevin
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 2A, 2014,
  • [36] Additive Manufacturing of Pure Mo and Mo + TiC MMC Alloy by Electron Beam Powder Bed Fusion
    Christopher Rock
    Edgar Lara-Curzio
    Betsy Ellis
    Christopher Ledford
    Donovan N. Leonard
    Rangasayee Kannan
    Michael Kirka
    Timothy Horn
    JOM, 2020, 72 : 4202 - 4213
  • [37] Powder bed charging during electron-beam additive manufacturing
    Cordero, Zachary C.
    Meyer, Harry M., III
    Nandwana, Peeyush
    Dehoff, Ryan R.
    ACTA MATERIALIA, 2017, 124 : 437 - 445
  • [38] Establishing specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing
    Soltani-Tehrani, Arash
    Shrestha, Rakish
    Phan, Nam
    Seifi, Mohsen
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 151
  • [39] Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing
    Zhang, Wenyou
    Tong, Mingming
    Harrison, Noel M.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (04) : 749 - 761
  • [40] An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing
    Shrestha, Rakish
    Shamsaei, Nima
    Seifi, Mohsen
    Nam Phan
    ADDITIVE MANUFACTURING, 2019, 29