Existence of viscosity solutions with asymptotic behavior of exterior problems for Hessian equations

被引:0
作者
Meng, Xianyu [1 ]
Fu, Yongqiang [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
Hessian equation; viscosity solution; asymptotic behavior; exterior problem coincidence; PARTIAL-DIFFERENTIAL-EQUATIONS; DIRICHLET PROBLEM; CONSTANT CURVATURE; ELLIPTIC-EQUATIONS; HYPERSURFACES;
D O I
10.22436/jnsa.009.01.32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Perron method is used to establish the existence of viscosity solutions of exterior problems for a class of Hessian type equations with prescribed behavior at infinity. (C) 2016 All rights reserved.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[2]   An extension to a theorem of Jorgens, Calabi, and Pogorelov [J].
Caffarelli, L ;
Li, YY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (05) :549-583
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[4]  
Caffarelli L., 1988, COMMUN PUR APPL MATH, V4, P41
[5]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[6]   EXISTENCE OF SOLUTIONS WITH ASYMPTOTIC BEHAVIOR OF EXTERIOR PROBLEMS OF HESSIAN EQUATIONS [J].
Dai, Limei .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (08) :2853-2861
[7]   The Dirichlet problem for Hessian equations on Riemannian manifolds [J].
Guan, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (01) :45-69
[8]   Hypersurfaces of constant curvature in hyperbolic space II [J].
Guan, Bo ;
Spruck, Joel .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) :797-817
[9]   Hypersurfaces of Constant Curvature in Hyperbolic Space I [J].
Guan, Bo ;
Spruck, Joel ;
Szapiel, Marek .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) :772-795
[10]   VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ISHII, H ;
LIONS, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :26-78