Carbon balance and water use efficiency of frequently cut Lolium perenne L swards at elevated carbon dioxide

被引:58
|
作者
Schapendonk, AHCM
Dijkstra, P
Groenwold, J
Pot, CS
vandeGeijn, SC
机构
[1] Res. Inst. Agrobiology/Soil Fertil., Box 24
[2] Smithsonian Environ. Research Centre, Mail Code DYN-2, Kennedy Space Centre
关键词
CO2; climate change; grassland; light utilization efficiency; Lolium perenne; photosynthesis; respiration; transpiration; water use efficiency;
D O I
10.1046/j.1365-2486.1997.00099.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The impact of doubled atmospheric [CO2] on the carbon balance of regularly cut Lolium perenne L. swards was studied for two years under semi-field conditions in the Wageningen Rhizolab. CO2 and H2O vapour exchange rates of the swards were measured continuously for two years in transparent enclosures. The light utilization efficiencies of the swards ranged between 1.5 g CO2 MJ(-1) global radiation (high light, ambient [CO2]) and 2.8 g CO2 MJ(-1) (low light, doubled [CO2]). The above-ground net primary productivity (NPP) in the enclosures was greater by 29% in 1994 and 43% in 1995 in the doubled [CO2] treatments, but only 20% and 25% more carbon was recovered in the periodical cuts. Thus, NPP increased significantly more than did the harvested aboveground biomass. The positive [CO2] effect on net carbon assimilation is therefore associated with a preferential allocation of extra carbon to the roots and soil. In addition to higher canopy photosynthesis and leaf elongation rates, a small part of the positive [CO2] effects on NPP could be attributed to a decrease of the specific respiration of the shoots. On a canopy basis however, respiration was equal or slightly higher at doubled [CO2] due to the higher amount of standing biomass. Comparison of NPP and carbon recovered in different harvests showed that allocation to roots and soil was highest in spring, it was low in early summer and increased again in late summer and autumn. The total gross amount of carbon partitioned to the roots and soil during the two year period was 57% more at doubled [CO2]. The total amount of carbon that was sequestered in the soil after subtraction of the respiratory losses was 458 g m(-2) and 779 g m(-2) in the ambient and doubled [CO2] treatments, respectively. The average water use efficiency (WUE) of the swards was increased by a factor 1.5 at doubled [CO2]. Both WUE and its positive interaction with [CO2] varied between years and were positively correlated with global irradiance. At doubled [CO2], the higher WUE was fully compensated for by a higher leaf area index. Therefore, total transpiration on a canopy basis was equal for the ambient and the doubled [CO2] concentrations in both years.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [31] BIOGEOCHEMISTRY Carbon dioxide and water use in forests
    Medlyn, Belinda
    De Kauwe, Martin
    NATURE, 2013, 499 (7458) : 287 - 289
  • [32] USE OF CARBON DIOXIDE FOR WATER INJECTIVITY IMPROVEMENT
    RAMSAY, HJ
    SMALL, FR
    JOURNAL OF PETROLEUM TECHNOLOGY, 1964, 16 (01): : 25 - &
  • [33] INFLUENCE OF ELEVATED CARBON-DIOXIDE ON WATER RELATIONS OF SOYBEANS
    ROGERS, HH
    SIONIT, N
    CURE, JD
    SMITH, JM
    BINGHAM, GE
    PLANT PHYSIOLOGY, 1984, 74 (02) : 233 - 238
  • [34] Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise
    Keenan, Trevor F.
    Hollinger, David Y.
    Bohrer, Gil
    Dragoni, Danilo
    Munger, J. William
    Schmid, Hans Peter
    Richardson, Andrew D.
    NATURE, 2013, 499 (7458) : 324 - +
  • [35] Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise
    Trevor F. Keenan
    David Y. Hollinger
    Gil Bohrer
    Danilo Dragoni
    J. William Munger
    Hans Peter Schmid
    Andrew D. Richardson
    Nature, 2013, 499 : 324 - 327
  • [36] Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment
    Li, Jiahong
    Erickson, John E.
    Peresta, Gary
    Drake, Bert G.
    GLOBAL CHANGE BIOLOGY, 2010, 16 (01) : 234 - 245
  • [37] LEAF PHOTOSYNTHESIS AND WATER-USE OF BIG BLUESTEM UNDER ELEVATED CARBON-DIOXIDE
    KIRKHAM, MB
    HE, H
    BOLGER, TP
    LAWLOR, DJ
    KANEMASU, ET
    CROP SCIENCE, 1991, 31 (06) : 1589 - 1594
  • [38] Light and water-use efficiencies of pine shoots exposed to elevated carbon dioxide and temperature
    Wang, KY
    Kellomäki, S
    Li, CY
    Zha, TS
    ANNALS OF BOTANY, 2003, 92 (01) : 53 - 64
  • [39] Elevated temperature and low nitrogen partially offset the yield, evapotranspiration, and water use efficiency of winter wheat under carbon dioxide enrichment
    Lenka, Narendra Kumar
    Lenka, Sangeeta
    Yashona, Dharmendra Singh
    Jat, Dinesh
    AGRICULTURAL WATER MANAGEMENT, 2021, 250
  • [40] Belowground Carbon Efficiency for Nitrogen and Phosphorus Acquisition Varies Between Lolium perenne and Trifolium repens and Depends on Phosphorus Fertilization
    Lu, Jiayu
    Yang, Jinfeng
    Keitel, Claudia
    Yin, Liming
    Wang, Peng
    Cheng, Weixin
    Dijkstra, Feike A.
    FRONTIERS IN PLANT SCIENCE, 2022, 13