KERNEL ENTROPY ESTIMATION FOR LINEAR PROCESSES

被引:6
作者
Sang, Hailin [1 ]
Sang, Yongli [2 ]
Xu, Fangjun [3 ,4 ]
机构
[1] Univ Mississippi, Dept Math, University, MS 38677 USA
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[3] East China Normal Univ, Sch Stat, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[4] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Linear process; kernel entropy estimation; quadratic functional; projection operator; DENSITY-ESTIMATION; INTEGRAL FUNCTIONALS; TIME-SERIES; INFERENCE;
D O I
10.1111/jtsa.12286
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {X-n : n is an element of N} be a linear process with bounded probability density function f ( x). We study the estimation of the quadratic functional integral(R)f(2)(x) dx. With a Fourier transform on the kernel function and the projection method, it is shown that, under certain mild conditions, the estimator 2/(n(n - 1) hn) S 1= i< j= n K((Xi - Xj)/ h(n)) has similar asymptotical properties as the i. i. d. case studied in Gine and Nickl (2008) if the linear process {Xn : n. N} has the defined short range dependence. We also provide an application to L-2(2) divergence and the extension to multi-variate linear processes. The simulation study for linear processes with Gaussian and alpha-stable innovations confirms our theoretical results. As an illustration, we estimate the L-2(2) divergences among the density functions of average annual river flows for four rivers and obtain promising results.
引用
收藏
页码:563 / 591
页数:29
相关论文
共 38 条
[2]  
[Anonymous], 1935, Cambridge Tracts in Mathematics and Mathematical Physics
[3]  
[Anonymous], 2000, Smoothing and regression
[4]  
BICKEL PJ, 1988, SANKHYA SER A, V50, P381
[5]   A class of antipersistent processes [J].
Bondon, Pascal ;
Palma, Wilfredo .
JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (02) :261-273
[6]  
Devroye L., 1985, Nonparametric Density Estimation: The L1 View
[7]   Estimators of long-memory: Fourier versus wavelets [J].
Fay, Gilles ;
Moulines, Eric ;
Roueff, Francois ;
Taqqu, Murad S. .
JOURNAL OF ECONOMETRICS, 2009, 151 (02) :159-177
[8]  
Gauss F., 1866, Ges. Werke, V3, P123
[9]  
Gauss F., 1866, Ges. Werke, V3, P207
[10]   A simple adaptive estimator of the integrated square of a density [J].
Ginc, Evarist ;
Nickl, Richard .
BERNOULLI, 2008, 14 (01) :47-61