Cost-effectiveness analysis of multimodal prognostication in cardiac arrest with EEG monitoring

被引:5
作者
Amorim, Edilberto [1 ,2 ,3 ,4 ]
Mo, Shirley S. [1 ]
Palacios, Sebastian [4 ]
Ghassemi, Mohammad M. [5 ]
Weng, Wei-Hung [5 ]
Cash, Sydney S. [1 ,2 ]
Bianchi, Matthew T. [1 ,2 ]
Westover, M. Brandon [1 ,2 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[3] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[4] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
CEREBRAL PERFORMANCE CATEGORY; LIFE-SUSTAINING THERAPY; HEALTH UTILITIES INDEX; OUTCOME PREDICTION; CARDIOPULMONARY-RESUSCITATION; PROGNOSIS; SURVIVORS; ELECTROENCEPHALOGRAPHY; ASSOCIATION; WITHDRAWAL;
D O I
10.1212/WNL.0000000000009916
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective To determine cost-effectiveness parameters for EEG monitoring in cardiac arrest prognostication. Methods We conducted a cost-effectiveness analysis to estimate the cost per quality-adjusted life-year (QALY) gained by adding continuous EEG monitoring to standard cardiac arrest prognostication using the American Academy of Neurology Practice Parameter (AANPP) decision algorithm: neurologic examination, somatosensory evoked potentials, and neuron-specific enolase. We explored lifetime cost-effectiveness in a closed system that incorporates revenue back into the medical system (return) from payers who survive a cardiac arrest with good outcome and contribute to the health system during the remaining years of life. Good outcome was defined as a Cerebral Performance Category (CPC) score of 1-2 and poor outcome as CPC of 3-5. Results An improvement in specificity for poor outcome prediction of 4.2% would be sufficient to make continuous EEG monitoring cost-effective (baseline AANPP specificity = 83.9%). In sensitivity analysis, the effect of increased sensitivity on the cost-effectiveness of EEG depends on the utility (u) assigned to a poor outcome. For patients who regard surviving with a poor outcome (CPC 3-4) worse than death (u= -0.34), an increased sensitivity for poor outcome prediction of 13.8% would make AANPP + EEG monitoring cost-effective (baseline AANPP sensitivity = 76.3%). In the closed system, an improvement in sensitivity of 1.8% together with an improvement in specificity of 3% was sufficient to make AANPP + EEG monitoring cost-effective, assuming lifetime return of 50% (USD $70,687). Conclusion Incorporating continuous EEG monitoring into cardiac arrest prognostication is cost-effective if relatively small improvements in sensitivity and specificity are achieved.
引用
收藏
页码:E563 / E575
页数:13
相关论文
共 37 条
[1]   Estimating the False Positive Rate of Absent Somatosensory Evoked Potentials in Cardiac Arrest Prognostication [J].
Amorim, Edilberto ;
Ghassemi, Mohammad M. ;
Lee, Jong W. ;
Greer, David M. ;
Kaplan, Peter W. ;
Cole, Andrew J. ;
Cash, Sydney S. ;
Bianchi, Matthew T. ;
Westover, M. Brandon .
CRITICAL CARE MEDICINE, 2018, 46 (12) :E1213-E1221
[2]   Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury [J].
Amorim, Edilberto ;
Rittenberger, Jon C. ;
Zheng, Julia J. ;
Westover, M. Brandon ;
Baldwin, Maria E. ;
Callaway, Clifton W. ;
Popescu, Alexandra .
RESUSCITATION, 2016, 109 :121-126
[3]  
[Anonymous], 2018, EMPLOYER HLTH BENEFI
[4]  
[Anonymous], 2012, National Industry-Specific Occupational Employment and Wage Estimates
[5]  
Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI [10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000530]
[6]   Part 8: Post-Cardiac Arrest Care 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [J].
Callaway, Clifton W. ;
Donnino, Michael W. ;
Fink, Ericka L. ;
Geocadin, Romergryko G. ;
Golan, Eyal ;
Kern, Karl B. ;
Leary, Marion ;
Meurer, William J. ;
Peberdy, Mary Ann ;
Thompson, Trevonne M. ;
Zimmerman, Janice L. .
CIRCULATION, 2015, 132 (18) :S465-S482
[7]   Inter-hospital variability in post-cardiac arrest mortality [J].
Carr, Brendan G. ;
Kahn, Jeremy M. ;
Merchant, Raina M. ;
Kramer, Andrew A. ;
Neumar, Robert W. .
RESUSCITATION, 2009, 80 (01) :30-34
[8]   Recent Trends in Survival From Out-of-Hospital Cardiac Arrest in the United States [J].
Chan, Paul S. ;
McNally, Bryan ;
Tang, Fengming ;
Kellermann, Arthur .
CIRCULATION, 2014, 130 (21) :1876-+
[9]   Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest [J].
Crepeau, Amy Z. ;
Fugate, Jennifer E. ;
Mandrekar, Jay ;
White, Roger D. ;
Wijdicks, Eelco F. ;
Rabinstein, Alejandro A. ;
Britton, Jeffrey W. .
RESUSCITATION, 2014, 85 (06) :785-789
[10]   Health Care Costs After Cardiac Arrest in the United States [J].
Damluji, Abdulla A. ;
Al-Damluji, Mohammed S. ;
Pomenti, Sydney ;
Zhang, Tony J. ;
Cohen, Mauricio G. ;
Mitrani, Raul D. ;
Moscucci, Mauro ;
Myerburg, Robert J. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2018, 11 (04)