Directional Characteristics of Wireless Power Transfer via Coupled Magnetic Resonance

被引:9
|
作者
Li, Yang [1 ]
Liu, Jiaming [1 ]
Yang, Qingxin [1 ]
Ni, Xin [1 ]
Zhai, Yujie [1 ]
Lou, Zhigang [1 ]
机构
[1] Tiangong Univ, Tianjin Key Lab Adv Elect Engn & Energy Technol, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
wireless power transfer; coupled magnetic resonance; angular deviation; directional characteristic; DESIGN CONSIDERATIONS; SYSTEM;
D O I
10.3390/electronics9111910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The wireless power transfer (WPT) system via coupled magnetic resonance (CMR) is an efficient and practical power transmission technology that can realize medium- and long-distance power transmission. People's requirements for the flexibility of charging equipment are becoming increasingly prominent. How to get rid of the "flitch plate type" wireless charging method and enhance the anti-offset performance is the main research direction. Directional characteristics of the system can affect the load receive power and system efficiency in practical applications. In this paper, the power and efficiency of the WPT system via CMR were analyzed according to the principle of near-field strong coupling at first. The expression of the mutual inductance between the transmitting and the receiving coils under angular offset was derived from the perspective of the mathematical model, and the influences of angular deviation were analyzed. Second, simulation models were established under different distance between coils, different coil types, and different coil radius ratios in symmetrical and asymmetrical systems. Afterwards, the directional law was obtained, providing reference for the optimal design of coupling coils. Finally, an experimental system was built, and directional characteristic experiments were carried out under different conditions. Experimental results were consistent with simulation results, which verified the theoretical analysis.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Wireless Power Transfer in Human Tissue via Conformal Strongly Coupled Magnetic Resonance
    Hu, Hao
    Georgakopoulos, Stavros V.
    2015 IEEE WIRELESS POWER TRANSFER CONFERENCE (WPTC), 2015,
  • [2] Magnetic Resonance Coupled Wireless Power Transfer Analysis For Electric Vehicle
    Rahman, Minhazur
    Rahman, Fariha
    Rasheduzzaman, A. H. M.
    Shahriyar, Md Fahim
    Ali, M. Tanseer
    2021 IEEE 3RD GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2021), 2021, : 28 - 33
  • [3] Influence Factors Analysis and Improvement Method on Efficiency of Wireless Power Transfer Via Coupled Magnetic Resonance
    Yan, Zhuo
    Li, Yang
    Zhang, Chao
    Yang, Qingxin
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [4] Analysis and Practical Considerations in Implementing Multiple Transmitters for Wireless Power Transfer via Coupled Magnetic Resonance
    Johari, Rizal
    Krogmeier, James V.
    Love, David J.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (04) : 1774 - 1783
  • [5] Research on Tradeoff between Power and Efficiency of Wireless Power Transfer via Magnetic Resonance Coupling
    Gao, Tian
    Wang, Xin
    Jiang, Linrui
    Hou, Jing
    Yang, Yan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2021, 16 (03) : 1427 - 1435
  • [6] Magnetic Coupled Resonant Wireless Power Transfer System Characteristics with Orientation
    Song, Kai
    Li, Zhenjie
    Jiang, Jinhai
    Zhu, Chunbo
    Du, Zhijiang
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 1749 - 1752
  • [7] Bi-directional magnetic resonance based wireless power transfer for electronic devices
    Kar, Durga P.
    Nayak, Praveen P.
    Bhuyan, Satyanarayan
    Mishra, Debasish
    APPLIED PHYSICS LETTERS, 2015, 107 (13)
  • [8] Efficient wireless power transfer via self-resonant Conformal Strongly Coupled Magnetic Resonance for wireless sensor networks
    Makhetha, Molefi J.
    Markus, Elisha D.
    Abu-Mahfouz, Adnan M.
    ENERGY REPORTS, 2022, 8 : 1358 - 1367
  • [9] A Study of the Self-coupling Magnetic Resonance Coupled Wireless Power Transfer
    Tong, Liqing
    Zeng, Hulong
    Peng, Fangzheng
    2015 THIRTIETH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2015), 2015, : 3138 - 3142
  • [10] Transfer efficiency maximum frequency of wireless power transfer via magnetic resonance coupling
    Tang, Zhi-De
    Xu, Yang-Yang
    Zhao, Mao
    Peng, Yi-Ling
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2015, 19 (03): : 8 - 13