UNBOUNDED SOLUTIONS FOR SCHRODINGER QUASILINEAR ELLIPTIC PROBLEMS WITH PERTURBATION BY A POSITIVE NON-SQUARE DIFFUSION TERM

被引:0
作者
Santos, Carlos Alberto [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Schrodinger equations; blow up solutions; quasilinear problem; non-square diffusion; multiplicity of solutions; BLOW-UP SOLUTIONS; EQUATIONS; EXISTENCE; SOLITONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present a version of Keller-Osserman condition for the Schrodinger quasilinear elliptic problem -Delta u + k/2u Delta u(2) = a(x)g(u) in R-N, u > 0 in R-N, lim(vertical bar x vertical bar > infinity) u(x) = infinity, where a : R-N -> [0, infinity) and g : [0, infinity) -> [0, infinity) are suitable continuous functions, N >= 1, and k > 0 is a parameter. By combining a dual approach and this version of Keller-Osserman condition, we show the existence and multiplicity of solutions.
引用
收藏
页数:11
相关论文
共 21 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
Aires JFL, 2015, TOPOL METHOD NONL AN, V46, P813
[3]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[4]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[5]  
[Anonymous], 1957, PACIFIC J MATH
[6]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[7]   Nonradial large solutions of sublinear elliptic problems [J].
El Mabrouk, Khalifa ;
Hansen, Wolfhard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1025-1041
[8]   GENERAL-METHOD FOR THE SOLUTION OF NON-LINEAR SOLITON AND KINK SCHRODINGER-EQUATIONS [J].
HASSE, RW .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (01) :83-87
[9]   ON SOLUTIONS OF DELTA-U= F(U) [J].
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :503-510
[10]   MAGNETIC SOLITONS [J].
KOSEVICH, AM ;
IVANOV, BA ;
KOVALEV, AS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 194 (3-4) :117-238