Regularization of the Kepler Problem on the Three-sphere

被引:2
作者
Hu, Shengda [1 ]
Santoprete, Manuele [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2014年 / 66卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Kepler problem on the sphere; Ligon-Shaaf regularization; geodesic flow on the sphere; N-BODY PROBLEM; CONSTANT CURVATURE; SPACES; GEOMETRY; VECTOR;
D O I
10.4153/CJM-2012-039-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we regularize the Kepler problem on S-3 in several different ways. First, we perform a Moser-type regularization. Then, we adapt the Ligon-Schaaf regularization to our problem. Finally, we show that the Moser regularization and the Ligon-Schaaf map we obtained can be understood as the composition of the corresponding maps for the Kepler problem in Euclidean space and the gnomonic transformation.
引用
收藏
页码:760 / 782
页数:23
相关论文
共 26 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 2015, Global aspects of classical integrable systems
[3]  
[Anonymous], 1891, Amer. J. Math, DOI DOI 10.2307/2369811
[4]   Central potentials on spaces of constant curvature:: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2 -: art. no. 052702 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]  
Cushman RH, 1997, COMMUN PUR APPL MATH, V50, P773, DOI 10.1002/(SICI)1097-0312(199708)50:8<773::AID-CPA3>3.0.CO
[6]  
2-3
[7]  
de Laat T., ARXIV10073695
[8]  
Diacu F., 2012, Atlantis Studies in Dynamical Systems
[9]   The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria [J].
Diacu, Florin ;
Perez-Chavela, Ernesto ;
Santoprete, Manuele .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) :247-266
[10]   The n-Body Problem in Spaces of Constant Curvature. Part II: Singularities [J].
Diacu, Florin ;
Perez-Chavela, Ernesto ;
Santoprete, Manuele .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) :267-275