All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes

被引:316
作者
Wu, Jinghua [1 ,2 ]
Shen, Lin [1 ,2 ]
Zhang, Zhihua [1 ]
Liu, Gaozhan [1 ,2 ]
Wang, Zhiyan [1 ,2 ]
Zhou, Dong [1 ]
Wan, Hongli [1 ,2 ]
Xu, Xiaoxiong [3 ,4 ]
Yao, Xiayin [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Zhejiang Funlithium New Energy Technol Co Ltd, Ningbo 315201, Zhejiang, Peoples R China
[4] Ganfeng Lithium Co Ltd, Xinyu 338015, Jiangxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
All-solid-state lithium batteries; Sulfide electrolytes; Oxide cathodes; Interfaces; ATOMIC LAYER DEPOSITION; ENHANCED ELECTROCHEMICAL PERFORMANCE; HIGH IONIC-CONDUCTIVITY; LIQUID-PHASE TECHNIQUE; SUPERIONIC CONDUCTOR; LI6PS5X X; INTERPHASE FORMATION; SECONDARY BATTERIES; CRYSTAL-STRUCTURE; LICOO2; ELECTRODE;
D O I
10.1007/s41918-020-00081-4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All-solid-state lithium batteries (ASSLBs) have attracted increasing attention due to their high safety and energy density. Among all corresponding solid electrolytes, sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities. Despite this, many challenges remain in the application of ASSLBs, including the stability of sulfide electrolytes, complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces. Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees, the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs. Based on this, this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and highlight critical properties such as compatible electrolyte/electrode interfaces. And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs, possible research directions and perspectives are discussed.
引用
收藏
页码:101 / 135
页数:35
相关论文
共 194 条
[21]   Improved Electrochemical Performance of LiCoO2 Electrodes with ZnO Coating by Radio Frequency Magnetron Sputtering [J].
Dai, Xinyi ;
Wang, Liping ;
Xu, Jin ;
Wang, Ying ;
Zhou, Aijun ;
Li, Jingze .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15853-15859
[22]   Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder [J].
de Klerk, Niek J. J. ;
Roslon, Trek ;
Wagemaker, Marnix .
CHEMISTRY OF MATERIALS, 2016, 28 (21) :7955-7963
[23]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[24]   Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries [J].
Dunlap, Nathan Arthur ;
Kim, Seulcham ;
Jeong, Je Jun ;
Oh, Kyu Hwan ;
Lee, Se-Hee .
SOLID STATE IONICS, 2018, 324 :207-217
[25]   Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface [J].
Gao, Yue ;
Wang, Daiwei ;
Li, Yuguang C. ;
Yu, Zhaoxin ;
Mallouk, Thomas E. ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (41) :13608-13612
[26]   Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries [J].
Gao, Zhonghui ;
Sun, Huabin ;
Fu, Lin ;
Ye, Fangliang ;
Zhang, Yi ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2018, 30 (17)
[27]   Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries [J].
Ge, Qi ;
Zhou, Lei ;
Lian, Yi-meng ;
Zhang, Xiaoling ;
Chen, Renjie ;
Yang, Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 97 :100-104
[28]   IONIC-CONDUCTIVITY OF QUENCHED ALKALI NIOBATE AND TANTALATE GLASSES [J].
GLASS, AM ;
NASSAU, K ;
NEGRAN, TJ .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (09) :4808-4811
[29]   Low-temperature Al2O3 atomic layer deposition [J].
Groner, MD ;
Fabreguette, FH ;
Elam, JW ;
George, SM .
CHEMISTRY OF MATERIALS, 2004, 16 (04) :639-645
[30]   Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor [J].
Guo, Hongliang ;
Gao, Qiuming .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :551-556