IoT enabled Wi-Fi Indoor Positioning System using raster maps
被引:2
作者:
Ali, Muhammad Usman
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Gyongsan, Gyeongbuk, South KoreaYeungnam Univ, Gyongsan, Gyeongbuk, South Korea
Ali, Muhammad Usman
[1
]
Hur, Soojung
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Gyongsan, Gyeongbuk, South KoreaYeungnam Univ, Gyongsan, Gyeongbuk, South Korea
Hur, Soojung
[1
]
Park, Yongwan
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Gyongsan, Gyeongbuk, South KoreaYeungnam Univ, Gyongsan, Gyeongbuk, South Korea
Park, Yongwan
[1
]
机构:
[1] Yeungnam Univ, Gyongsan, Gyeongbuk, South Korea
来源:
IPSN '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS
|
2019年
关键词:
Indoor localization;
Internet of Things;
Indoor Positioning System;
IPS;
Wi-Fi Fingerprinting;
Particle Swarm Optimization;
PSO;
D O I:
10.1145/3302506.3312612
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
In the context of enabling location-based services in complex indoor environments using ubiquitous resources, this study presents a Wi-Fi-based Indoor Positioning System(IPS) which does not require any laborious and time-consuming effort in contrast to Wi-Fi fingerprinting which requires in its offline database calibration phase. The proposed system is an effortless approach in which radio maps are built automatically using online feedback of Wi-Fi enabled the Internet of Things(IoT) sensors. The results show that it is possible to achieve an accuracy of 2 meters by constructing radio maps of Wi-Fi environment using online feedback of IoT sensors in combination with the raster floor plan of the environment.