Some techniques for solving absolute value equations

被引:25
作者
Moosaei, H. [1 ]
Ketabchi, S. [2 ]
Noor, M. A. [3 ]
Iqbal, J. [4 ]
Hooshyarbakhsh, V. [5 ]
机构
[1] Univ Bojnord, Dept Math, Bojnord, Iran
[2] Univ Guilan, Dept Appl Math, Fac Math Sci, Rasht, Iran
[3] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
[4] Abdul Wali Khan Univ Mardan, Dept Math, Kpk, Pakistan
[5] Islamic Azad Univ, Young Researchers & Elite Club, Harnedan Branch, Hamadan, Iran
关键词
Absolulte value equation; Generalized Newton method; Homotopy perturbation method; The successive linearization algorithm; Singular values; HOMOTOPY PERTURBATION METHOD; MINIMUM NORM SOLUTION; ITERATIVE METHODS;
D O I
10.1016/j.amc.2015.06.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze two new methods for solving the NP-hard absolute value equations (AVE) Ax - vertical bar x vertical bar = b, where A is an arbitrary n x n real matrix and b is an element of R-n, in the case, singular value of A exceeds 1. The comparison with other known methods is carried to show the effectiveness of the proposed methods for a variety of randomly generated problems. The ideas and techniques of this paper may stimulate further research. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:696 / 705
页数:10
相关论文
共 39 条
[1]   Application of He's homotopy perturbation method to functional integral equations [J].
Abbasbandy, S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (05) :1243-1247
[2]  
[Anonymous], 1971, P 4 C PROB BRAS RUM
[3]  
[Anonymous], 1999, NONLINEAR PROGRAMMIN
[4]  
[Anonymous], 1063 AC SCI CZECH RE
[5]  
[Anonymous], 0202 DAT MIN I
[6]  
[Anonymous], ABSTR APPL AN
[7]  
[Anonymous], ABSTR APPL AN
[9]  
Cottle R. W., 1992, The Linear Complementarity Problem
[10]  
Cottle RW., 1968, Linear Algebra Appl, V1, P103, DOI [DOI 10.1016/0024-3795(68)90052-9, 10.1016/0024-3795(68)90052-9]