SUPPRESSION OF BLOW UP BY MIXING IN GENERALIZED KELLER-SEGEL SYSTEM WITH FRACTIONAL DISSIPATION

被引:0
作者
Shi, Binbin [1 ]
Wang, Weike [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Keller-Segel system; Mixing; Fractional dissipation; Suppression of blow up; MAXIMUM PRINCIPLE; GLOBAL EXISTENCE; DIFFUSION; MODEL; FLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for a generalized parabolic-elliptic Keller-Segel equation with a fractional dissipation and an additional mixing effect of advection by an incompressible flow. Under a suitable mixing condition on the advection, we study well-posedness of solution with large initial data. We establish the global L-infinity estimate of the solution through nonlinear maximum principle, and obtain the global existence of classical solution.
引用
收藏
页码:1413 / 1440
页数:28
相关论文
共 36 条
[1]   An approximate treatment of gravitational collapse [J].
Ascasibar, Yago ;
Granero-Belinchon, Rafael ;
Manuel Moreno, Jose .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 262 :71-82
[2]   SUPPRESSION OF BLOW-UP IN PATLAK-KELLER-SEGEL VIA SHEAR FLOWS [J].
Bedrossian, Jacob ;
He, Siming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (06) :4722-4766
[3]   The Sobolev inequality on the torus revisited [J].
Benyi, Arpad ;
Oh, Tadahiro .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2013, 83 (03) :359-374
[4]   Global and exploding solutions for nonlocal quadratic evolution problems [J].
Biler, P ;
Woyczynski, WA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (03) :845-869
[5]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262
[6]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[7]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935
[8]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[9]   Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation [J].
Burczak, Jan ;
Granero-Belinchon, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) :6115-6142
[10]  
Caldern AP., 1954, Stud. Math, V14, P249, DOI [DOI 10.4064/SM-14-2-249-271, 10.4064/sm-14-2-249-271]