Data-Driven Computationally Intensive Theory Development

被引:130
作者
Berente, Nicholas [1 ]
Seidel, Stefan [2 ]
Safadi, Hani [3 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Liechtenstein, FL-9490 Vaduz, Liechtenstein
[3] Univ Georgia, Athens, GA 30602 USA
关键词
grounded theory methodology; computational theory discovery; GTM; computational; trace data; theory development; lexicon; inductive; GROUNDED THEORY; INFORMATION-SYSTEMS; SOCIAL MEDIA; DATA SCIENCE; BIG DATA; EMERGENCE; ANALYTICS;
D O I
10.1287/isre.2018.0774
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Increasingly abundant trace data provide an opportunity for information systems researchers to generate new theory. In this research commentary, we draw on the largely "manual" tradition of the grounded theory methodology and the highly "automated" process of computational theory discovery in the sciences to develop a general approach to computationally intensive theory development from trace data. This approach involves the iterative application of four general processes: sampling, synchronic analysis, lexical framing, and diachronic analysis. We provide examples from recent research in information systems.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [41] Big Data-driven Value Creation for Organizations
    Olszak, Celina M.
    Zurada, Jozef
    [J]. PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2019, : 164 - 173
  • [42] Data-driven manufacturing: An assessment model for data science maturity
    Gokalp, Mert Onuralp
    Gokalp, Ebru
    Kayabay, Kerem
    Kocyigit, Altan
    Eren, P. Erhan
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2021, 60 (60) : 527 - 546
  • [43] Ex-Post Evaluation of Data-Driven Decisions: Conceptualizing Design Objectives
    Elgendy, Nada
    Elragal, Ahmed
    Ohenoja, Markku
    Paivarinta, Tero
    [J]. PERSPECTIVES IN BUSINESS INFORMATICS RESEARCH, BIR 2022, 2022, 462 : 18 - 34
  • [44] Data-driven innovation development: an empirical analysis of the antecedents using PLS-SEM and fsQCA
    Hossain, Mohamamd Alamgir
    Quaddus, Mohammed
    Hossain, Md Moazzem
    Gopakumar, Gopika
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024, 333 (2-3) : 895 - 937
  • [45] Data-driven operations management: organisational implications of the digital transformation in industrial practice
    Goelzer, Philipp
    Fritzsche, Albrecht
    [J]. PRODUCTION PLANNING & CONTROL, 2017, 28 (16) : 1332 - 1343
  • [46] Extracting Value from Industrial Alarms and Events: A Data-Driven Approach Based on Exploratory Data Analysis
    Bezerra, Aguinaldo
    Silva, Ivanovitch
    Guedes, Luiz Affonso
    Silva, Diego
    Leitao, Gustavo
    Saito, Kaku
    [J]. SENSORS, 2019, 19 (12)
  • [47] Data-Driven Innovation: What is it?
    Luo, Jianxi
    [J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2023, 70 (02) : 784 - 790
  • [48] Data-Driven Problems in Elasticity
    Conti, S.
    Mueller, S.
    Ortiz, M.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (01) : 79 - 123
  • [49] A data-driven classification of feelings
    Thomson, David M. H.
    Crocker, Christopher
    [J]. FOOD QUALITY AND PREFERENCE, 2013, 27 (02) : 137 - 152
  • [50] Data-Driven Product Innovation
    Fu, Xin
    Asorey, Hernan
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 2311 - 2312